Lung Navigation System for Localizing and Resecting Nodules
用于定位和切除结节的肺部导航系统
基本信息
- 批准号:10198924
- 负责人:
- 金额:$ 36.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsAugmented RealityClassificationComputer softwareDevelopmentDevicesDiagnosisDiagnosticEarly treatmentElectromagneticsExcisionFamily suidaeGoalsHealthcare SystemsLegal patentLobectomyLungLung noduleMachine LearningMalignant - descriptorMalignant neoplasm of lungMeasuresMethodsModelingNavigation SystemNetwork-basedNoduleOperative Surgical ProceduresOutcomePatientsPerformancePhase I/II Clinical TrialPositioning AttributeRecurrenceResearchStructure of parenchyma of lungSurfaceSurgeonSurgical StaplersSurgical StaplesSurgical marginsSurvival RateSystemTechnologyThoracoscopesThoracoscopyTimeTissuesVisualizationX-Ray Computed Tomographyaccurate diagnosisarmbasecancer diagnosisconvolutional neural networkcost estimatedeep learning algorithmdesigninnovationlow dose computed tomographylung cancer screeningmachine learning algorithmminimally invasivenovelopen sourceparticleporcine modelpreservationpulmonary functionscreeningsensortumor
项目摘要
Project Abstract
Although Wedge Resection Surgery results in better lung function, tumor recurrence rate is almost
double that of lobectomy, with significantly poorer 5-year survival rates. This may be attributed to the difficulty
in accurately localizing and resecting the nodules in a deflated lung. Currently, there is no effective method of
accurately localizing the nodules and guiding the surgical stapling device to the optimal resection margin. The
long-term goal of this research is to investigate algorithms and technologies to manage lung nodules from
diagnosis to surgical resection. The objective of this proposal is to design and develop a lung navigation
(LungNav) system to localize and excise, with sufficient margin, small and early malignant lung nodules. The
experimental methods will be to design and develop the LungNav system integrated with an active nodule
tracker called J-bar, machine learning algorithms for determining the optimal resection margin, and tracked
surgical stapling device for accurately excising the nodule. Tumor deformation algorithms and augmented
reality displays will be developed to visualize the nodule on thoracosopy videos and guide the surgical stapler
in real-time to the optimal margin. The hypothesis is that by anchoring the J-bar close to the nodule, the nodule
position can be accurately tracked in real-time despite significant tissue deformation when the lung is collapsed
and manipulated during surgery. To achieve the goals of this project, we will pursue the following specific aims:
1) Design and develop the nodule tracker (J-bar) and deformation algorithms to estimate the real-time position
of the nodule. 2) Investigate a machine-learning approach based on convolutional neural networks (CNN) to
determine the optimal resection margin. 3) Design and develop a software navigation module, called LungNav,
for visualizing the tumor and navigating the surgical stapler to the optimal resection margin. 4) Validate the
design and performance of the LungNav system using ex-vivo lung tissue and live porcine models. The
proposed research is significant since it addresses an important problem, which potentially affects several
thousand patients each year, of accurately localizing and resecting lung nodules while preserving healthy lung
function. The research is innovative since it builds on state-of-the-art machine learning algorithms, navigation
systems and augmented reality methods to accurately diagnose and localize the nodule in presence of
significant tissue deformation. The expected outcome of the project is the development of CNN-based machine
learning algorithms for lung nodule classification and a LungNav system with tumor deformation algorithms and
augmented reality methods to localize and guide complete surgical resection of lung nodules.
项目摘要
虽然楔形切除术可以改善肺功能,但肿瘤复发率几乎为
是肺叶切除术的两倍,5年生存率明显更低。这可能是由于困难。
准确定位和切除肺内的结节。目前,没有有效的方法,
精确定位结节并将外科缝合装置引导至最佳切除边缘。的
这项研究的长期目标是研究管理肺结节的算法和技术,
诊断到手术切除。本提案的目的是设计和开发肺导航
(LungNav)系统定位和切除,具有足够的边缘,小和早期恶性肺结节。的
实验方法将是设计和开发与活动结节集成的LungNav系统
跟踪器称为J-bar,机器学习算法用于确定最佳切除边缘,并跟踪
用于精确切除结节的外科缝合装置。肿瘤变形算法和增强
将开发现实显示器,以便在胸腔镜视频中可视化结节,并引导外科吻合器
实时调整到最佳边缘。假设通过将J形杆锚定在结节附近,结节
尽管当肺萎陷时组织显著变形,
在手术中被操纵为了实现这一项目的目标,我们将努力实现以下具体目标:
1)设计和开发结节跟踪器(J-bar)和变形算法,以估计实时位置
的结节。2)研究基于卷积神经网络(CNN)的机器学习方法,
确定最佳切除边缘。3)设计和开发一个软件导航模块,称为LungNav,
用于使肿瘤可视化并将外科缝合器导航到最佳切除边缘。4)验证
使用离体肺组织和活猪模型的LungNav系统的设计和性能。的
拟议的研究是重要的,因为它解决了一个重要的问题,这可能会影响几个
每年有1000名患者,准确定位和切除肺结节,同时保留健康的肺
功能这项研究是创新的,因为它建立在最先进的机器学习算法,导航,
系统和增强现实方法来准确地诊断和定位结节,
明显的组织变形。该项目的预期成果是开发基于CNN的机器
用于肺结节分类的学习算法和具有肿瘤变形算法的LungNav系统,以及
增强现实方法来定位和引导肺结节的完整手术切除。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Clinical and molecular validation of BAP1, MTAP, P53, and Merlin immunohistochemistry in diagnosis of pleural mesothelioma.
- DOI:10.1038/s41379-022-01081-z
- 发表时间:2022-10
- 期刊:
- 影响因子:7.5
- 作者:Chapel, David B.;Hornick, Jason L.;Barlow, Julianne;Bueno, Raphael;Sholl, Lynette M.
- 通讯作者:Sholl, Lynette M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAPHAEL BUENO其他文献
RAPHAEL BUENO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAPHAEL BUENO', 18)}}的其他基金
Validation of Prognostic and Diagnostic molecular tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7219955 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic Molecular Tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
8332277 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic molecular tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7568786 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic molecular tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7367818 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic molecular tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7081176 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic molecular tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7776923 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic Molecular Tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
8894433 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic Molecular Tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
8517595 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Prospective Validation of Prognostic and Predictive Molecular tests in Mesothelioma
间皮瘤预后和预测分子检测的前瞻性验证
- 批准号:
10216184 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
Validation of Prognostic and Diagnostic Molecular Tests in Mesothelioma
间皮瘤预后和诊断分子测试的验证
- 批准号:
7992732 - 财政年份:2006
- 资助金额:
$ 36.78万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.78万 - 项目类别:
Research Grant