A platform for genome mining of multidrug-resistant pathogens to develop therapeutic phages using synthetic biology
利用合成生物学开发治疗性噬菌体的多重耐药病原体基因组挖掘平台
基本信息
- 批准号:10356122
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-18 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteriaBacteriophagesBiologyBiomedical EngineeringCell Surface ReceptorsCellsCenters for Disease Control and Prevention (U.S.)ChromosomesCytolysisDNA sequencingDevelopmentDiseaseEndotoxinsEngineeringEnvironmentEssential GenesExperimental DesignsGenesGeneticGenetic EngineeringGenomeGenome engineeringGoalsGoldHorizontal Gene TransferHumanInfectionKnowledgeLearningLifeLife Cycle StagesLyticLytic PhaseMedicalMethodsMicrobial BiofilmsMiningModalityModelingModern MedicineModificationMonoclonal AntibodiesMulti-Drug ResistanceMutationPatientsPenicillin ResistancePharmaceutical PreparationsPreparationProductionPropertyProphagesReportingResistanceRogaineSafetySepsisSeriesSourceSpecificityStreptococcal InfectionsStreptococcus pyogenesStructureTestingTherapeuticVaccinesVirulenceVirulence FactorsWound Infectionantimicrobialarmbacterial resistancebasedesigndesign-build-testefficacy testingexperiencefunctional genomicsgene interactionglobal healthhigh throughput analysishuman pathogenin vivoin vivo Modelinsightinterestmulti-drug resistant pathogenpathogenpathogenic bacteriareceptorresearch and developmentsmall moleculesynthetic biologytherapeutic targettool
项目摘要
PROJECT SUMMARY/ABSTRACT
Multidrug resistant [MDR] pathogens represent a global health threat and a challenge for modern medicine;
and, as bacterial resistance to new antibiotics is now outpacing the antibiotic development effort, it is critical to
develop new effective antimicrobial alternatives. The antimicrobial resistance crisis is bringing new interests
worldwide to develop phage-based therapies. Over the last decade, efforts in the U.S. to produce phage
therapeutics targeting different bacterial pathogens have shown promising results, including successful
treatments of life-threatening infections in human patients. Safety of phage therapy is still a concern in the
U.S.; however FDA has highlighted requirements for phage preparation: they need to be safe, pure, potent,
exclusively lytic, non-transducing, and lacking undesirable genes (antibiotic resistance, virulence factors) and
bacterial endotoxins.
If bacteriophages for therapy have historically been isolated from natural environments, recent progresses in
phage genetics and genome engineering have proven successful to generate synthetic, strictly lytic derivatives
targeting pathogens. The development of synthetic phages against MDR pathogens would require pipelines to
accelerate our knowledge on newly discovered phages and their potential for synthetic biology. Critical insights
into their biology, i.e. genome structure, phage replication cycle, genetic content (essential genes versus
dispensable [antibiotic resistance and virulence genes]), interaction with the target host, are a prerequisite.
Here, we propose a platform to (i) mine the genomes of MDR pathogens, a gold mine to identify dormant
lysogenic phages directly from within their natural host; and (ii) develop high-throughput pipelines to quickly
gain knowledge on the phage biology to guide our efforts to engineer synthetic phages as therapeutics.
We will use the Group A Streptococcus (GAS), a “Concerning Threat” on the 2019 CDC “18 MDR pathogens”
Watch List, as our model. We showed that Tn-seq could identify functional lysogenic phages from cryptic ones
in GAS genomes, and mutations to reboot dormant prophages into their lytic cycle. In Aim 1, we will produce
the critical knowledge to guide decision on what phages to select for therapeutic potential using synthetic
biology: we will experimentally assess phage genome organization, phage replication/transduction
mechanisms, host range and cell surface receptor(s). In Aim 2, we will implement a design-build-test-learn
cycle" pipeline to optimize the synthetic biology effort, i.e. deletion of undesirable genes and addition of
“payload” genes, to enhance their potential as therapy phages. Finally, we will use in vivo model of wound
infection to test the efficacy of the synthetic phages we generated. Our overarching goal is to develop the tools
and experience to apply our synthetic biology phage-engineering platform to other MDR pathogens.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoann Stephane Le Breton其他文献
Yoann Stephane Le Breton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoann Stephane Le Breton', 18)}}的其他基金
Role of ScfAB in the Pathophysiology of the Group A Streptococcus
ScfAB 在 A 族链球菌病理生理学中的作用
- 批准号:
9403487 - 财政年份:2017
- 资助金额:
$ 16.91万 - 项目类别:
相似海外基金
The effects of antibiotics to the transfer frequency of the antibiotic resistance genes and the evolution of high-level resistance.
抗生素对抗生素抗性基因转移频率和高水平抗性进化的影响。
- 批准号:
22K05790 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/2 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Research Grant
Combating Antibiotic Resistance to Aminoglycoside Antibiotics through Chemical Synthesis
通过化学合成对抗氨基糖苷类抗生素的耐药性
- 批准号:
392481159 - 财政年份:2017
- 资助金额:
$ 16.91万 - 项目类别:
Research Fellowships
NEC05839 Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
NEC05839 先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019687/1 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Research Grant
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019857/1 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
366555 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Operating Grants
Chicken or the Egg: Is AMR in the Environment Driven by Dissemination of Antibiotics or Antibiotic Resistance Genes?
先有鸡还是先有蛋:环境中的抗菌素耐药性是由抗生素或抗生素抗性基因的传播驱动的吗?
- 批准号:
NE/N019717/1 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Research Grant
The SuDDICU study- A study of the impact of preventative antibiotics (SDD) on patient outcome and antibiotic resistance in the critically ill in intensive care
SuDDICU 研究 - 一项关于预防性抗生素 (SDD) 对重症监护病危患者的患者预后和抗生素耐药性影响的研究
- 批准号:
361307 - 财政年份:2016
- 资助金额:
$ 16.91万 - 项目类别:
Operating Grants
Contamination status of antibiotics and antibiotic resistance genes (ARGs) in tropical Asian aquatic environments with artificial and natural disturbance
人工和自然干扰下亚洲热带水生环境中抗生素和抗生素抗性基因(ARG)的污染状况
- 批准号:
25257402 - 财政年份:2013
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RAPID: COLLABORATIVE RESEARCH: Fate and Transport of Antibiotics and Antibiotic Resistance Genes During Historic Colorado Flood
快速:合作研究:历史性科罗拉多洪水期间抗生素和抗生素抗性基因的命运和运输
- 批准号:
1402635 - 财政年份:2013
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant














{{item.name}}会员




