Brain-wide input and output wiring diagram of oxytocin neurons and its function in claustrum-endopiriform complex

全脑催产素神经元输入输出接线图及其在屏状核-内皮状复合体中的功能

基本信息

  • 批准号:
    10356917
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Abstract Social behavior reflects highly complex, multimodal, internal/external stimuli integration and is critical to the survival of many animals, including humans. Impaired social behavior has been implicated in many different mental disorders. Despite its importance, we know relatively little about underlying neural circuit mechanisms to generate context appropriate social behavioral response. Oxytocin (OT) is a neuropeptide that plays an essential role in regulating social behavior. Genetic mutations that affect OT signaling have been heavily implicated in brain disorders with social behavioral impairments such as autism spectrum disorder. OT neurons predominately located in the hypothalamus receive input from the sensory system and other brain regions to integrate both external stimuli and internal information. In turn, hypothalamic OT neurons release OT to the bloodstream via the pituitary to affect body metabolism and provide central projection to other brain regions. To support OT function, OT receptor (OTR) is highly expressed in socially important brain areas. Particularly, OT signaling via OTR in different brain regions is known to increase social information processing while suppressing background noise to achieve circuit specific neural modulation. Despite prominent roles of OT signaling during social behavior, precise neuroanatomical connectivity and circuit specific effects of OT signaling remain unclear. Here, we propose to study the detailed anatomical organization of hypothalamic OT neurons and to investigate its function in a novel mouse brain area. It has been technically challenging to image and analyze microscopic structures (e.g., axons) throughout the entire mammalian brain. To overcome this barrier, we previously developed a novel method that combines serial two-photon tomography (STPT) imaging of whole mouse brains at cellular resolution with viral and genetic tools to achieve quantitative input and output maps of cell type specific populations. Using this approach, we will examine topographically segregated output (Aim1) and input (Aim2) maps of hypothalamic OT neurons and will develop web visualization platform to display high-resolution images for further analysis. Moreover, we will investigate OT signaling function in the claustrum-endopiriform complex to guide normal social behavior based on our preliminary results (Aim3). We believe these studies will establish a much-needed detailed anatomical wiring diagram of OT neurons and will provide a foundation to elucidate the neural circuit basis of mature social behavior in health and disease.
摘要 社会行为反映了高度复杂的,多模态的,内部/外部刺激的整合,是至关重要的 包括人类在内的许多动物的生存。社会行为受损与许多不同的 精神障碍尽管它很重要,但我们对潜在的神经回路机制知之甚少 以产生与情境相适应的社会行为反应。催产素(OT)是一种神经肽, 在规范社会行为中的重要作用。影响OT信号传导的基因突变已经严重 与自闭症谱系障碍等社交行为障碍有关。OT神经元 主要位于下丘脑,接受来自感觉系统和其他脑区的输入, 整合外部刺激和内部信息。反过来,下丘脑OT神经元释放OT到 通过脑垂体调节血流以影响身体代谢并向其他脑区域提供中枢投射。到 支持OT功能,OT受体(OTR)在社会重要脑区高度表达。特别是, 已知在不同的大脑区域中通过OTR的信号传导增加了社会信息处理, 抑制背景噪声以实现电路特定的神经调制。尽管OT的突出作用 社会行为中的信号传导,精确的神经解剖学连接和OT的回路特异性效应 信号仍然不清楚。在这里,我们建议研究下丘脑OT的详细解剖组织 神经元,并研究其在一个新的小鼠脑区的功能。从技术上讲, 并分析微观结构(例如,轴突)遍布整个哺乳动物大脑。为了克服这个 屏障,我们以前开发了一种新的方法,结合串行双光子断层扫描(STPT)成像 用病毒和遗传工具在细胞分辨率下对整个小鼠大脑进行分析,以实现定量输入和输出 细胞类型特异性群体的图谱。使用这种方法,我们将检查拓扑隔离的输出 (Aim 1)和输入(Aim 2)下丘脑OT神经元的地图,并将开发网络可视化平台, 显示高分辨率图像以供进一步分析。此外,我们将研究OT信号转导功能, 根据我们的初步结果(Aim 3),我们认为,屏状核-内虹膜状复合体可以指导正常的社会行为。我们 我相信这些研究将建立一个急需的OT神经元的详细解剖接线图, 为阐明健康和疾病中成熟社会行为的神经回路基础提供了基础。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disinhibition of somatostatin interneurons confers resilience to stress in male but not female mice.
生长抑素中间神经元的去抑制可以赋予雄性小鼠而非雌性小鼠的压力恢复能力。
  • DOI:
    10.1016/j.ynstr.2020.100238
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jefferson SJ;Feng M;Chon U;Guo Y;Kim Y;Luscher B
  • 通讯作者:
    Luscher B
Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain.
  • DOI:
    10.3389/fnana.2021.787601
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Newmaster KT;Kronman FA;Wu YT;Kim Y
  • 通讯作者:
    Kim Y
Advances in studying whole mouse brain vasculature using high-resolution 3D light microscopy imaging.
  • DOI:
    10.1117/1.nph.9.2.021902
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Bennett HC;Kim Y
  • 通讯作者:
    Kim Y
Protocol for using serial two-photon tomography to map cell types and cerebrovasculature at single-cell resolution in the whole adult mouse brain.
  • DOI:
    10.1016/j.xpro.2023.102048
  • 发表时间:
    2023-03-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liwang, Josephine K.;Bennett, Hannah C.;Pi, Hyun-Jae;Kim, Yongsoo
  • 通讯作者:
    Kim, Yongsoo
Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice.
  • DOI:
    10.1523/jneurosci.0307-22.2022
  • 发表时间:
    2022-06-22
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Son, Seoyoung;Manjila, Steffy B.;Newmaster, Kyra T.;Wu, Yuan-ting;Vanselow, Daniel J.;Ciarletta, Matt;Anthony, Todd E.;Cheng, Keith C.;Kim, Yongsoo
  • 通讯作者:
    Kim, Yongsoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongsoo Kim其他文献

Yongsoo Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongsoo Kim', 18)}}的其他基金

Understanding cellular architecture of the neurovascular unit and its function in the whole mouse brain
了解神经血管单元的细胞结构及其在整个小鼠大脑中的功能
  • 批准号:
    10163927
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Understanding cellular architecture of the neurovascular unit and its function in the whole mouse brain
了解神经血管单元的细胞结构及其在整个小鼠大脑中的功能
  • 批准号:
    10431849
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Understanding cellular architecture of the neurovascular unit and its function in the whole mouse brain
了解神经血管单元的细胞结构及其在整个小鼠大脑中的功能
  • 批准号:
    10401994
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Understanding cellular architecture of the neurovascular unit and its function in the whole mouse brain
了解神经血管单元的细胞结构及其在整个小鼠大脑中的功能
  • 批准号:
    9767300
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Understanding cellular architecture of the neurovascular unit and its function in the whole mouse brain
了解神经血管单元的细胞结构及其在整个小鼠大脑中的功能
  • 批准号:
    9919633
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了