Lactate transporter MCT1 is required for the high suppressive function of tumor infiltrating regulatory T cells

肿瘤浸润调节性 T 细胞的高抑制功能需要乳酸转运蛋白 MCT1

基本信息

  • 批准号:
    10199740
  • 负责人:
  • 金额:
    $ 4.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2021-11-15
  • 项目状态:
    已结题

项目摘要

Lactate transporter MCT1 is required for the high suppressive function of tumor infiltrating regulatory T cells Abstract Cancer immunotherapy has revolutionized the way we treat cancer, but most patients fail to respond due to several resistance mechanisms including the recruitment, proliferation, and differentiation of regulatory T (Treg) cells in the tumor microenvironment (TME). While cytotoxic effector T (Teff) cells are rendered dysfunctional by the TME, the natural immunosuppressive function of Treg cells remains intact. Treg and Teff cells exhibit distinct metabolisms which may explain the discrepancy in their function within the TME. Metabolically, the TME is characterized by hypoxia, low pH, and limiting metabolites such as glucose and amino acids. While the highly glycolytic Teff cells are in direct competition with the tumor for glucose, recent evidence suggests Foxp3, the lineage defining transcription factor of Treg cells, can reprogram metabolism of Treg cells to function in high lactate, low glucose environments. Hypothesizing that Treg cells were supported by lactic acid within the TME, we bred a mouse with a Treg specific deletion of the lactate transporter MCT1 (Slc16a1f/f Foxp3YFPCre) and inoculated them with B16 melanoma. Treg specific loss of MCT1 resulted in slowed tumor growth and increased survival without leading to systemic autoimmunity. Measuring lactic acid concentration, we observed high levels within B16 tumors relative to peripheral lymphoid tissues. While MCT1 is predominantly recognized to transport lactate, it has several other substrates, such as propionate and studies on colonic Treg cells suggest propionate enhances Treg cell function and differentiation. Preliminary data from our lab corroborate these results, showing Treg cells conditioned in propionate increased expression of Treg markers Nrp1 and Helios. However, from these observations two questions arise, 1) is MCT1 required for Treg cell function only in lactate high TMEs, and 2) how do non-lactate MCT1 substrates influence Treg cell metabolism? We hypothesize that MCT1 is required for intratumoral Treg cell function in lactate rich TMEs and that its substrates promote an oxidative metabolism and the expression of Treg cell signature genes. To address this hypothesis, first we will (1) determine the requirement of MCT1 for intratumoral Treg cell function in metabolically distinct TMEs. We will inoculate Slc16a1f/f Foxp3YFPCre mice with metabolically distinct melanoma cell lines and measure the impact on intratumoral Treg cell metabolism via Seahorse, and function via suppression assay. Second, we will (2) determine the impact of non-lactate MCT1 substrate propionate on Treg cell metabolism. Using Foxp3YFPCre mice we will isolate Treg cells then condition them in media containing propionate and measure the impact on metabolism via Seahorse and apply isotopic flux analysis to identifying how Treg cells utilize propionate. By understanding the role of MCT1 and its substrates for Treg cell metabolism and function we can better design therapies that specifically dampen intratumoral Treg cells and improve cancer immunotherapies. This training will prepare me for an academic post-doctoral and ultimately independent investigator position by enhancing my research and communication skills and deepening my knowledge of Treg cells in cancer.
乳酸转运蛋白MCT1是肿瘤浸润调节T细胞的高抑制作用所必需的 抽象的 癌症免疫疗法彻底改变了我们治疗癌症的方式,但大多数患者无法做出应有的反应 到几种电阻机制,包括调节t的募集,增殖和分化(Treg) 肿瘤微环境(TME)中的细胞。而细胞毒性效应t(teff)细胞通过 TME Treg细胞的自然免疫抑制功能保持完整。 Treg和Teff细胞表现出不同的 可以解释其功能中TME的差异的代谢。代谢,TME是 以缺氧,低pH值和限制代谢物(如葡萄糖和氨基酸)为特征。而高度 最近的证据表明,糖酵解的Teff细胞与葡萄糖的肿瘤直接竞争,表明Foxp3, 定义Treg细胞转录因子的谱系可以重新编程Treg细胞的代谢,以在高乳酸中起作用, 低葡萄糖环境。假设Treg细胞在TME内得到乳酸支持,我们繁殖了 具有乳酸转运蛋白MCT1(SLC16A1F/F FOXFPCRE)的Treg特异性缺失的小鼠并接种 他们患有B16黑色素瘤。 Treg的特异性MCT1损失导致肿瘤生长减慢和生存增加 没有导致系统性自身免疫性。测量乳酸浓度,我们观察到高水平 B16肿瘤相对于周围淋巴组织。虽然MCT1主要被认为可以运输乳酸,但 它还有其他几个底物,例如丙酸和对结肠Treg细胞的研究表明丙酸酯增强 Treg细胞功能和分化。我们实验室的初步数据证实了这些结果,显示了Treg细胞 以丙酸酯为条件增加了Treg标记NRP1和HELIOS的表达。但是,从这些 观察出现了两个问题,1)仅在乳酸高TME中需要Treg细胞功能MCT1,以及2)如何 非乳酸MCT1底物会影响Treg细胞代谢吗?我们假设MCT1是必需的 富含乳酸的TME中的肿瘤内Treg细胞功能,其底物促进氧化 代谢和Treg细胞特征基因的表达。为了解决这一假设,首先我们将(1) 确定MCT1对代谢不同TME中肿瘤内Treg细胞功能的需求。我们将 接种slc16a1f/f foxp3yfpcre小鼠具有代谢不同的黑色素瘤细胞系并测量撞击 在肿瘤内Treg细胞中通过海马代谢,并通过抑制测定功能。第二,我们将(2) 确定非乳酸MCT1底物丙酸对Treg细胞代谢的影响。使用foxp3yfpcre 小鼠我们将隔离treg细胞,然后在含有丙酸酯的培养基中调节它们,并测量对 通过海马代谢,并应用同位素通量分析以识别Treg细胞如何利用丙酸酯。经过 了解MCT1及其底物对Treg细胞代谢和功能的作用,我们可以更好地设计 专门抑制肿瘤内Treg细胞并改善癌症免疫疗法的疗法。这个培训将 通过增强我 研究和沟通技巧,加深我对癌症中Treg细胞的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McLane Watson其他文献

McLane Watson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McLane Watson', 18)}}的其他基金

Lactate transporter MCT1 is required for the high suppressive function of tumor infiltrating regulatory T cells
肿瘤浸润调节性 T 细胞的高抑制功能需要乳酸转运蛋白 MCT1
  • 批准号:
    9908825
  • 财政年份:
    2020
  • 资助金额:
    $ 4.07万
  • 项目类别:

相似国自然基金

氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
  • 批准号:
    32371222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
  • 批准号:
    82300940
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
  • 批准号:
    82301621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
  • 批准号:
    82373354
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    $ 4.07万
  • 项目类别:
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
  • 批准号:
    10733153
  • 财政年份:
    2023
  • 资助金额:
    $ 4.07万
  • 项目类别:
Role of the immunoglobulin DQ52 DH gene segment in fetal immunosuppression
免疫球蛋白 DQ52 DH 基因片段在胎儿免疫抑制中的作用
  • 批准号:
    10596627
  • 财政年份:
    2022
  • 资助金额:
    $ 4.07万
  • 项目类别:
Tuning peptide specifities for T cell tolerance in Type 1 diabetes
调整 1 型糖尿病 T 细胞耐受性的肽特异性
  • 批准号:
    10630946
  • 财政年份:
    2022
  • 资助金额:
    $ 4.07万
  • 项目类别:
Legumain to the rescue: A new ADC linker strategy to address the limitations of cathepsin cleavage
Legumain 来拯救:一种新的 ADC 连接策略,解决组织蛋白酶切割的局限性
  • 批准号:
    10561636
  • 财政年份:
    2022
  • 资助金额:
    $ 4.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了