The Role of Matrix Rigidity and Hepatocyte Mechanotransduction in Fibrotic Liver Disease
基质刚性和肝细胞机械转导在纤维化肝病中的作用
基本信息
- 批准号:10200030
- 负责人:
- 金额:$ 35.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAtomic Force MicroscopyBackBiochemicalBioinformaticsBiologicalBiomedical EngineeringCause of DeathCellsCharacteristicsChronicCirrhosisClinicalComplexCuesDataData SetDevelopmentDiseaseDown-RegulationEtiologyExperimental ModelsExtracellular MatrixFailureFibrosisFunctional disorderGene Expression ProfilingGenesGenetically Engineered MouseHNF4A geneHepaticHepatic InsufficiencyHepatocyteHumanKnowledgeLasersLeadLiverLiver CirrhosisLiver FailureLiver FibrosisLiver diseasesLocationMechanicsMicrodissectionModalityMolecularMorbidity - disease rateOrgan DonorOrganoidsPathologicPathway interactionsPatientsPatternProcessPropertyProtein KinaseProteinsReplacement TherapyResearchRoleSamplingSideSignal PathwaySignal TransductionSignaling ProteinSourceStimulusTechnologyTestingTherapeuticTissue EngineeringTissue ModelTissue SampleTissuesTranslatingUnited StatesUp-RegulationValidationbioprintingchronic liver diseaseclinical applicationclinical translationclinically relevantclinically significantdesigndrug testinggenetic signaturehuman diseasehuman modelhuman tissueimplantationinduced pluripotent stem cellinnovationliver functionliver transplantationmechanical propertiesmechanotransductionmortalitymultidisciplinarynovel strategiesnovel therapeuticspredictive modelingprognostic modelreplacement tissueresponserhoscaffoldtargeted treatmenttherapeutic target
项目摘要
PROJECT SUMMARY
Liver fibrosis, and ultimately cirrhosis, is the final common pathway of chronic liver diseases induced by any
etiology. Liver failure due to cirrhosis is the 12th leading cause of death by disease in the United States and
there is no effective current treatment other than liver transplantation. One hallmark of liver cirrhosis is that the
liver extracellular matrix becomes stiffer, but how the stiffened microenvironment causes hepatocyte
dysfunction is not completely understood. Our proposed research addresses this gap in knowledge and is
designed to deliver data that will lead to tangible advances in the treatment of liver cirrhosis, which may include
development of 1) novel therapies that maintain adequate liver function in patients with progressive fibrotic liver
disease, 2) clinical prognostic models that predict which patients with resolving fibrosis may regain sufficient
hepatic function, and 3) highly functional tissue-engineered liver constructs for tissue replacement therapy in
patients with end-stage liver insufficiency. Our preliminary studies show that hepatocytes are exquisitely
responsive to the mechanical cues of extracellular matrix tuned to the stiffness of fibrotic livers, and that the
induced downstream signaling pathways (i.e. mechanotransduction) directly inhibit hepatocyte function. Using
a multi-disciplinary cross-modality approach, we propose to further delineate the mechanism of how a stiffened
microenvironment induces hepatocyte dysfunction and its clinical applicability. These scientific objectives will
be achieved first, by determining the key molecular players that translate mechanical cues into intracellular
signals that inhibit hepatocyte function using genetically engineered mouse models with tissue-specific and
temporally-induced expression of key mechanotransduction molecules. Subsequently, we propose to verify the
clinical relevance of these molecular mechanisms by characterizing matrix rigidity at the microscale level in
normal and cirrhotic human livers as determined by atomic force microscopy, in conjunction with single-cell
gene expression analysis. Finally, we propose to test whether the relationship between microenvironment
rigidity and hepatocyte function may be recapitulated in complex tissue-engineered liver constructs that are
produced by three-dimensional bioprinting ex vivo and tuned to the stiffness of normal or fibrotic human liver.
The proposed research is conceptually innovative because, instead of attempting to therapeutically target the
process of fibrosis, we aim to understand the hepatocyte response to fibrosis, thereby prompting new
approaches to treat and prognosticate chronic liver disease that focus on modulating the hepatocyte response
to the fibrotic stimulus. It is, in the end, liver functional failure that causes death from liver disease, and not
necessarily the process of fibrosis in itself. Results from this proposed study will authoritatively define the role
of matrix rigidity in modulating hepatocyte function and illuminate several paths toward clinical translation.
项目摘要
肝纤维化,最终肝硬化,是由任何原因引起的慢性肝病的最终共同途径。
病因学在美国,肝硬化导致的肝衰竭是疾病死亡的第12大原因,
除了肝移植外,目前没有有效的治疗方法。肝硬化的一个标志是
肝细胞外基质变得更硬,但硬化的微环境如何导致肝细胞
功能障碍尚未完全了解。我们提出的研究解决了这一知识差距,
旨在提供将导致肝硬化治疗取得切实进展的数据,其中可能包括
开发1)在进行性肝纤维化患者中维持足够肝功能的新疗法
2)临床预后模型,其预测哪些具有消退纤维化的患者可以重新获得足够的
肝功能,和3)用于组织替代疗法的高功能性组织工程化肝脏构建体,
终末期肝功能不全患者。我们的初步研究表明,肝细胞
响应于细胞外基质的机械提示,调节纤维化肝脏的硬度,
诱导的下游信号传导途径(即机械转导)直接抑制肝细胞功能。使用
一个多学科的跨模态的方法,我们建议进一步描绘的机制,如何僵硬
微环境诱导肝细胞功能障碍及其临床应用。这些科学目标将
首先,通过确定将机械信号转化为细胞内信号的关键分子,
使用具有组织特异性的基因工程小鼠模型抑制肝细胞功能,
暂时诱导关键机械转导分子的表达。随后,我们提议核查
这些分子机制的临床相关性,通过表征基质硬度在微观水平,
通过原子力显微镜测定的正常人和肝硬化人的肝脏,结合单细胞
基因表达分析。最后,我们建议测试微环境之间的关系是否
刚性和肝细胞功能可以在复杂的组织工程化肝脏结构中重现,
通过离体三维生物打印产生,并调整到正常或纤维化人类肝脏的硬度。
拟议的研究在概念上是创新的,因为,而不是试图治疗目标,
纤维化的过程中,我们的目标是了解肝细胞对纤维化的反应,从而促进新的
治疗和预防慢性肝病的方法,重点是调节肝细胞反应
纤维化刺激。最终,肝功能衰竭导致肝病死亡,而不是
纤维化的过程。从这项拟议的研究结果将authority定义的作用
基质刚性在调节肝细胞功能中的作用,并阐明了临床转化的几条途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAMMY T CHANG其他文献
TAMMY T CHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAMMY T CHANG', 18)}}的其他基金
The Role of Matrix Rigidity and Hepatocyte Mechanotransduction in Fibrotic Liver Disease
基质刚性和肝细胞机械转导在纤维化肝病中的作用
- 批准号:
9525328 - 财政年份:2017
- 资助金额:
$ 35.66万 - 项目类别:
Liver Tissue Engineering Through Three-Dimensional Hepatocyte Culture
通过三维肝细胞培养进行肝组织工程
- 批准号:
8876660 - 财政年份:2012
- 资助金额:
$ 35.66万 - 项目类别:
Liver Tissue Engineering Through Three-Dimensional Hepatocyte Culture
通过三维肝细胞培养进行肝组织工程
- 批准号:
8486427 - 财政年份:2012
- 资助金额:
$ 35.66万 - 项目类别:
Liver Tissue Engineering Through Three-Dimensional Hepatocyte Culture
通过三维肝细胞培养进行肝组织工程
- 批准号:
9091514 - 财政年份:2012
- 资助金额:
$ 35.66万 - 项目类别:
Liver Tissue Engineering Through Three-Dimensional Hepatocyte Culture
通过三维肝细胞培养进行肝组织工程
- 批准号:
8678906 - 财政年份:2012
- 资助金额:
$ 35.66万 - 项目类别:
Liver Tissue Engineering Through Three-Dimensional Hepatocyte Culture
通过三维肝细胞培养进行肝组织工程
- 批准号:
8384751 - 财政年份:2012
- 资助金额:
$ 35.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant