Motor cortical signaling of impedance during manipulation

操纵过程中运动皮层阻抗信号

基本信息

项目摘要

Project Summary A large body of research has led to statistical models showing how movement velocity is encoded in the motor cortex. However, forces also need to be controlled in harmony with motion when interacting with objects and research has rarely focused on how the motor system coordinates both together. The simultaneous variation of force and motion is incorporated in the definition of impedance. Our current neural models do not describe impedance encoding, which limits our understanding of object interaction, an important aspect of human behavior. The proposed research will develop new models of motor cortical impedance encoding during object interaction. Using these new models to decode ongoing impedance signaling, we will substantiate an advanced theory of impedance control used by the motor system to produce accurate object displacement in response to the forces applied by the hand. This research bridges the expertise of Dr. Schwartz in neurophysiology and of Dr. Hogan in robot control. Monkey subjects will perform tasks with real and virtual tools that naturally encourage the use of impedance control. We will record the activity of motor cortical neurons during these tasks and develop new mathematical models to describe the relation between neural activity and force, motion and impedance. Results from electromyography recordings, joint angle measurements and torque calculations, together with the neural models, will be used to better understand how impedance is regulated at the level of muscles and joints. Contributions of stretch reflexes to impedance will be studied and compared to the predictive impedance signaling decoded from motor cortex. This work promises to extend our understanding of the neural control principles governing the way we use our arms and hands to interact with our surroundings. These principles can be used to build new theories of the cognitive processes used to predict and effect changes in the world around us. At the same time, elucidation of the neural and mechanical details of forceful interaction will lead to new rehabilitative and neural prosthetic approaches to paralysis.
项目摘要 大量的研究已经导致统计模型显示运动速度是如何在运动中编码的 皮层然而,当与物体相互作用时,力也需要与运动协调地控制, 研究很少集中在运动系统如何协调两者。同时变异 力和运动的平衡被包含在阻抗的定义中。我们目前的神经模型没有描述 阻抗编码,这限制了我们对物体相互作用的理解,而物体相互作用是人类行为的一个重要方面。 行为该研究将为开发运动皮层阻抗编码的新模型提供理论基础。 互动使用这些新模型来解码正在进行的阻抗信号,我们将证实一个 先进的阻抗控制理论,用于电机系统产生精确的物体位移, 对手施加的力的反应。这项研究将施瓦茨博士的专业知识与 神经生理学和霍根博士的机器人控制。猴子受试者会用真实的和虚拟的 自然鼓励使用阻抗控制的工具。我们将记录运动皮层的活动 神经元在这些任务中的作用,并开发新的数学模型来描述神经元之间的关系。 活动和力,运动和阻抗。肌电图记录结果,关节角度 测量和扭矩计算,以及神经模型,将用于更好地了解如何 在肌肉和关节的水平上调节阻抗。牵张反射对阻抗的贡献将是 研究并与从运动皮层解码的预测阻抗信号进行比较。这项工作承诺 扩展我们对神经控制原理的理解,这些原理支配着我们使用手臂和手的方式, 与我们的周围环境互动。这些原则可以用来建立新的认知过程理论 用来预测和影响我们周围世界的变化。同时,阐明了神经和 强有力的相互作用的机械细节将导致新的康复和神经修复方法, 瘫痪

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW B. SCHWARTZ其他文献

ANDREW B. SCHWARTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW B. SCHWARTZ', 18)}}的其他基金

Motor cortical signaling of impedance during manipulation
操纵过程中运动皮层阻抗信号
  • 批准号:
    9885601
  • 财政年份:
    2020
  • 资助金额:
    $ 54.14万
  • 项目类别:
Motor cortical signaling of impedance during manipulation
操纵过程中运动皮层阻抗信号
  • 批准号:
    10579843
  • 财政年份:
    2020
  • 资助金额:
    $ 54.14万
  • 项目类别:
Building Better Brains: Neural Prosthetics and Beyond
构建更好的大脑:神经修复术及其他
  • 批准号:
    8007319
  • 财政年份:
    2010
  • 资助金额:
    $ 54.14万
  • 项目类别:
Model-based training for BCI rehabilitation
基于模型的 BCI 康复训练
  • 批准号:
    7937831
  • 财政年份:
    2009
  • 资助金额:
    $ 54.14万
  • 项目类别:
Model-based training for BCI rehabilitation
基于模型的 BCI 康复训练
  • 批准号:
    7817973
  • 财政年份:
    2009
  • 资助金额:
    $ 54.14万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    8516286
  • 财政年份:
    2006
  • 资助金额:
    $ 54.14万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7491025
  • 财政年份:
    2006
  • 资助金额:
    $ 54.14万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7287764
  • 财政年份:
    2006
  • 资助金额:
    $ 54.14万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7125655
  • 财政年份:
    2006
  • 资助金额:
    $ 54.14万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7675933
  • 财政年份:
    2006
  • 资助金额:
    $ 54.14万
  • 项目类别:

相似海外基金

Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
  • 批准号:
    2907459
  • 财政年份:
    2023
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Studentship
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2022
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Discovery Grants Program - Individual
Acceleration framework for training deep learning by cooperative with algorithms and computer architectures
通过与算法和计算机架构合作训练深度学习的加速框架
  • 批准号:
    21K17768
  • 财政年份:
    2021
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
  • 批准号:
    RGPIN-2021-03147
  • 财政年份:
    2021
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Discovery Grants Program - Individual
Material and Device Building Blocks for Hardware Acceleration of Machine Learning and Artificial Intelligence Algorithms
用于机器学习和人工智能算法硬件加速的材料和设备构建模块
  • 批准号:
    2004791
  • 财政年份:
    2020
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909291
  • 财政年份:
    2019
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    ST/S005560/1
  • 财政年份:
    2019
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Training Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909298
  • 财政年份:
    2019
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
  • 批准号:
    2348748
  • 财政年份:
    2019
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Studentship
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
  • 批准号:
    1909379
  • 财政年份:
    2019
  • 资助金额:
    $ 54.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了