Cortical Control of a Dextrous Prosthetic Hand

灵巧假手的皮质控制

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to build and demonstrate an anthropomorphic prosthetic arm and hand that is controlled by cortical output. The human arm and hand have approximately 30 degrees- of-freedom (dot- independent joint rotations) and are very complex mechanical structures. Hands are an example of an advanced evolutionary specialization, which along with binocular vision and bipedal locomotion, led to tool use- a major determinant of human brain development and behavior. Yet, little is known about the neural control of the hand during natural behavior. Regarding active prosthetic hands, there has been a paucity of work on robot hand control and only recently has there been an effort to make a truly accurate functioning hand replica. Primate reach-to-grasp behavior is characterized by four components- reach, hand shaping, orientation and the closing of the fingers around the object. Dexterity, characterized by the active generation of force through the fingertips to maintain stable grasp and/or to manipulate an object, can be considered as an additional component of hand behavior. Given our success in developing an anthropomorphic arm prosthesis, we expect to extract the signals necessary to achieve dexterous prosthetic hand control using activity recorded from populations of single neurons. In our present arm-only control scheme, we have successfully extracted the velocity of the arm from the recorded brain activity. To reach our ultimate goal of dexterous control, we will also need to control wrist orientation, hand shape and finger force application. Since each of these control categories is multidimensional, the overall control problem is very difficult. We will use a number of strategies to address this difficult problem. An interdisciplinary team of neurophysiologists, engineers, statisticians, robotocists and psychophysicists with a strong history of collaboration has been assembled to develop the pieces needed for this project. The project will be led by Andrew Schwartz at the University of Pittsburgh where the prosthetic control will take place. Yoky Matsuoka at Carnegie Mellon will build the highly anthropomorphic robots and behavioral manipulanda. Rob Kass, also at Carnegie Mellon, will develop the extraction algorithms relating neural activity to movement. Marco Santello and Stephen Helms-Tillery at Arizona State University will develop the behavioral tasks using a primate model and then record cortical activity as these tasks are performed. Dr. Soechting, at the University of Minnesota, will provide detailed psychophysical data describing the way subjects exert finger forces to manipulate objects. Peter Allen, at Columbia, will develop automated robotic grasp and finger placement algorithms for the brain-controlled prosthetic hand.
描述(由申请人提供):本项目的目标是构建和演示一个由皮层输出控制的拟人假肢和手。人的手臂和手具有大约30个自由度(点独立关节旋转)并且是非常复杂的机械结构。手是一个高级进化特化的例子,它沿着双眼视觉和两足运动,导致了工具的使用--这是人类大脑发育和行为的一个主要决定因素。然而,人们对自然行为中手部的神经控制知之甚少。关于主动假手,一直缺乏对机器人手控制的工作,直到最近才努力制造真正准确的功能性手复制品。灵长类动物的伸手抓握行为由四个部分组成--伸手、手的形状、方向和手指在物体周围的闭合。灵巧性,其特征在于通过指尖主动产生力以保持稳定的抓握和/或操纵物体,可以被认为是手行为的附加组成部分。鉴于我们在开发拟人手臂假体方面的成功,我们期望使用从单个神经元群体记录的活动来提取实现灵巧假手控制所需的信号。在我们目前的手臂控制方案中,我们成功地从记录的大脑活动中提取了手臂的速度。为了达到灵巧控制的最终目标,我们还需要控制手腕方向,手形和手指力的应用。由于这些控制类别中的每一个都是多维的,因此总体控制问题非常困难。我们将采取一些策略来解决这个难题。一个由神经生理学家、工程师、统计学家、机器人学家和精神病学家组成的跨学科团队已经组建起来,他们具有很强的合作历史,可以开发这个项目所需的部件。该项目将由匹兹堡大学的Andrew Schwartz领导,假肢控制将在那里进行。卡内基梅隆大学的Yoky Matsuoka将建造高度拟人化的机器人和行为操纵器。同样来自卡内基梅隆大学的罗布·卡斯将开发将神经活动与运动联系起来的提取算法。亚利桑那州立大学的Marco Santello和Stephen Helms-Tillery将使用灵长类动物模型开发行为任务,然后记录执行这些任务时的皮层活动。明尼苏达大学的Soechting博士将提供详细的心理物理数据,描述受试者如何施加手指力来操纵物体。哥伦比亚大学的彼得艾伦将为大脑控制的假手开发自动机器人抓取和手指放置算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW B. SCHWARTZ其他文献

ANDREW B. SCHWARTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW B. SCHWARTZ', 18)}}的其他基金

Motor cortical signaling of impedance during manipulation
操纵过程中运动皮层阻抗信号
  • 批准号:
    10362744
  • 财政年份:
    2020
  • 资助金额:
    $ 100.8万
  • 项目类别:
Motor cortical signaling of impedance during manipulation
操纵过程中运动皮层阻抗信号
  • 批准号:
    9885601
  • 财政年份:
    2020
  • 资助金额:
    $ 100.8万
  • 项目类别:
Motor cortical signaling of impedance during manipulation
操纵过程中运动皮层阻抗信号
  • 批准号:
    10579843
  • 财政年份:
    2020
  • 资助金额:
    $ 100.8万
  • 项目类别:
Building Better Brains: Neural Prosthetics and Beyond
构建更好的大脑:神经修复术及其他
  • 批准号:
    8007319
  • 财政年份:
    2010
  • 资助金额:
    $ 100.8万
  • 项目类别:
Model-based training for BCI rehabilitation
基于模型的 BCI 康复训练
  • 批准号:
    7937831
  • 财政年份:
    2009
  • 资助金额:
    $ 100.8万
  • 项目类别:
Model-based training for BCI rehabilitation
基于模型的 BCI 康复训练
  • 批准号:
    7817973
  • 财政年份:
    2009
  • 资助金额:
    $ 100.8万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7491025
  • 财政年份:
    2006
  • 资助金额:
    $ 100.8万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    8516286
  • 财政年份:
    2006
  • 资助金额:
    $ 100.8万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7287764
  • 财政年份:
    2006
  • 资助金额:
    $ 100.8万
  • 项目类别:
Cortical Control of a Dextrous Prosthetic Hand
灵巧假手的皮质控制
  • 批准号:
    7125655
  • 财政年份:
    2006
  • 资助金额:
    $ 100.8万
  • 项目类别:

相似海外基金

Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2017
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2016
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
  • 批准号:
    8810865
  • 财政年份:
    2015
  • 资助金额:
    $ 100.8万
  • 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2015
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
  • 批准号:
    FT110100972
  • 财政年份:
    2012
  • 资助金额:
    $ 100.8万
  • 项目类别:
    ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
  • 批准号:
    DP120103813
  • 财政年份:
    2012
  • 资助金额:
    $ 100.8万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了