Integrative Modeling of Biomolecular Machinery in Nucleotide Excision Repair
核苷酸切除修复中生物分子机械的集成建模
基本信息
- 批准号:10362051
- 负责人:
- 金额:$ 44.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-24 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlkylating AgentsAreaBinding ProteinsBiochemicalBiochemical GeneticsCarcinogen exposureCell DeathCellsCerebrooculofacioskeletal SyndromeChemicalsCisplatinClinicalCockayne SyndromeComplexCoupledCryoelectron MicroscopyDNADNA DamageDNA RepairDNA Repair PathwayDNA biosynthesisDNA lesionDataDefectDetectionDeuteriumDevelopmentDiseaseERCC3 geneElementsEndogenous FactorsEnvironmental CarcinogensEnvironmental HealthEnvironmental Risk FactorEpitopesEquilibriumEtiologyEvolutionExcisionExposure toFoundationsFree EnergyGeneticGenetic DiseasesGenetic TranscriptionGenomeGenomic DNAGoalsHealthHeterogeneityHumanHybridsHydrogenImpairmentIndividualInvestigationKnowledgeLesionLettersLightMaintenanceMalignant NeoplasmsMass Spectrum AnalysisMethodsModelingModificationMolecularMolecular ConformationMotionMutationNatureNerve DegenerationNormal RangeNucleotide Excision RepairOutcomePathway AnalysisPathway interactionsPatientsPhenotypePlatinum adductPositioning AttributePredispositionPremature aging syndromeProcessProteinsPyrimidine DimersReactive Oxygen SpeciesRegulationRepair ComplexResolutionResourcesRoentgen RaysRoleSamplingScanningScienceSiteSite-Directed MutagenesisStructureSupercomputingSurgical incisionsSyndromeTechniquesToxinTrichothiodystrophyUltraviolet RaysWorkXPA geneXeroderma Pigmentosumadductassaultcancer predispositioncrosslinkcytotoxicdisease phenotypediverse datads-DNAeffective therapyexperienceexperimental groupexperimental studygene repairhelicasehuman diseaseinsightmobile computingnovelnucleaseparallel computerprotein complexrepairedstructural biologysuccesstranscription factor TFIIH
项目摘要
PROJECT SUMMARY/ABSTRACT
Nucleotide excision repair (NER) is an essential genome maintenance pathway that detects and removes
harmful DNA lesions resulting from exposure to environmental carcinogens, toxins, alkylating agents, reactive
oxygen species and ultraviolet radiation. NER stands out among all DNA repair pathways for its ability to remove
the widest array of structurally unrelated lesions. The need to process a wide variety of damaged sites has given
rise to a remarkably complex molecular machinery. Defects in this machinery provide a paradigm for the diverse
clinical consequences of DNA damage and are associated with severe human diseases – 1) ultraviolet radiation-
sensitive syndrome; 2) xeroderma pigmentosum, characterized with extreme cancer predisposition; 3) cerebro-
oculo-facio-skeletal syndrome; 4) trichothiodystrophy; and 5) Cockayne syndrome, associated with premature
ageing and accelerated neurodegeneration. Furthermore, NER is intricately intertwined with other vital pathways
that orchestrate the expression and repair of genes. Thus, understanding the molecular mechanisms of NER is
a grand challenge in biomedical science. Progress toward this goal has been hindered by the size, complexity
and dynamic nature of the assemblies that accomplish NER. To overcome this critical barrier to progress, we
will employ integrative modeling methods, combining state-of-the-art computation with experimental data from
cryo-electron microscopy (cryo-EM), site-directed mutagenesis, crosslinking mass spectrometry (XL-MS),
hydrogen deuterium exchange (HDX) mass spectrometry and small angle X-ray scattering (SAXS) to elucidate
the assembly, function and regulation of key NER complexes. Specifically, our focus is on transcription factor
IIH (TFIIH) as the centerpiece of the NER machinery. In Aim1, we will elucidate the functional dynamics of TFIIH
and discover key allosteric residue networks enabling the function of this recognized NER master coordinator.
We will also decipher the effects of TFIIH disease mutations, providing a novel paradigm for the diverse clinical
manifestations of NER impairment. In Aim2, we will unravel the mechanisms of TFIIH-associated lesion scanning
and DNA damage verification. In Aim3, we will synthesize diverse structural data to create an integrative model
of the most crucial intermediate in NER – the pre-incision complex. Hybrid models will define the structural
elements allowing TFIIH to serve as a mobile platform for the assembly and remodeling of the NER machinery.
Our work will benefit from synergistic collaborative interactions with world-class experimental groups to inform,
validate, and extend our models. Parallel computational and experimental advances will yield key insights into
the structure, dynamics and function of NER complexes while making direct connection to genetic disease
phenotypes. Success of the project will thus have major impacts - both in understanding disease etiology and in
offering a structural framework to devise effective treatments.
项目总结/摘要
核苷酸切除修复(NER)是一种重要的基因组维护途径,
由于暴露于环境致癌物、毒素、烷化剂、反应性
氧物种和紫外线辐射。NER在所有DNA修复途径中脱颖而出,因为它能够去除
最广泛的结构无关的病变由于需要处理各种各样的受损地点,
形成了非常复杂的分子结构这一机制的缺陷为不同的人提供了一个范例。
DNA损伤的临床后果,并与严重的人类疾病有关- 1)紫外线辐射-
敏感综合征; 2)着色性干皮病,以极端癌症易感性为特征; 3)脑-
眼-面-骨骼综合征; 4)脑硫营养不良;和5)Cockayne综合征,与早产儿相关
老化和加速的神经退化。此外,NER与其他重要途径错综复杂地交织在一起
协调基因的表达和修复。因此,了解NER的分子机制是
这是生物医学科学的一个重大挑战。实现这一目标的进展一直受到规模、复杂性和
和实现NER的组件的动态性质。为了克服这一重大障碍,我们
将采用综合建模方法,结合最先进的计算与实验数据,
冷冻电子显微镜(cryo-EM)、定点诱变、交联质谱(XL-MS),
氢氘交换(HDX)质谱和小角X射线散射(SAXS),以阐明
关键NER复合物的组装、功能和调节。具体来说,我们的重点是转录因子
IIH(TFIIH)作为NER机制的核心。在目标1中,我们将阐明TFIIH的功能动力学
并发现关键的变构残基网络,使这个公认的NER主协调器的功能。
我们还将破译TFIIH疾病突变的影响,为不同的临床研究提供新的范例。
净入学率受损的表现。在目标2中,我们将阐明TFIIH相关病变扫描的机制
和DNA损伤鉴定在Aim 3中,我们将综合各种结构数据以创建一个集成模型
NER中最关键的中间体--切口前复合体。混合模型将定义结构
这些元素使TFIIH能够作为一个移动的平台,用于装配和改造NER机器。
我们的工作将受益于与世界级实验小组的协同合作互动,
验证和扩展我们的模型。并行计算和实验的进步将产生关键的见解,
NER复合物的结构,动力学和功能,同时与遗传疾病直接相关
表型因此,该项目的成功将产生重大影响-无论是在了解疾病的病因,
提供了一个结构框架来设计有效的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivaylo Nikolaev Ivanov其他文献
Ivaylo Nikolaev Ivanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivaylo Nikolaev Ivanov', 18)}}的其他基金
Integrative Modeling of Biomolecular Machinery in Nucleotide Excision Repair
核苷酸切除修复中生物分子机械的集成建模
- 批准号:
10596096 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Advanced Computational Modeling of Molecular Machines in Gene Regulation and DNA Repair
基因调控和 DNA 修复中分子机器的高级计算模型
- 批准号:
10358509 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Advanced Computational Modeling of Molecular Machines in Gene Regulation and DNA Repair
基因调控和 DNA 修复中分子机器的高级计算模型
- 批准号:
10576900 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
相似海外基金
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
- 批准号:
10374792 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Elucidation and prevention of the mechanism of hepatic sinusoidal obstruction syndrome (SOS) induced by DNA alkylating agents
DNA烷化剂诱发肝窦阻塞综合征(SOS)机制的阐明和预防
- 批准号:
21K15255 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Differential resistance mechanisms to monofunctional vs bifunctional alkylating agents in glioma
神经胶质瘤对单功能烷化剂与双功能烷化剂的不同耐药机制
- 批准号:
10570900 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Development of individualized therapy by elucidation of molecular mechanisms for hypermutation phenotype induced by treatment with alkylating agents in glioma
通过阐明神经胶质瘤中烷化剂治疗诱导的超突变表型的分子机制来开发个体化治疗
- 批准号:
18K09004 - 财政年份:2018
- 资助金额:
$ 44.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reversing intrinsic cancer cell resistance to alkylating agents by histone deacetylase inhibition
通过组蛋白脱乙酰酶抑制逆转癌细胞对烷化剂的内在耐药性
- 批准号:
214657440 - 财政年份:2012
- 资助金额:
$ 44.04万 - 项目类别:
Research Grants
Rerouting alkylating agents to the mitochondria for cancer therapy
将烷化剂重新路由至线粒体用于癌症治疗
- 批准号:
247842 - 财政年份:2011
- 资助金额:
$ 44.04万 - 项目类别:
Studentship Programs
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8105413 - 财政年份:2010
- 资助金额:
$ 44.04万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8271313 - 财政年份:2010
- 资助金额:
$ 44.04万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8730259 - 财政年份:2010
- 资助金额:
$ 44.04万 - 项目类别:
Novel approaches to enhance tumor cell cytotoxicity of alkylating agents
增强烷化剂肿瘤细胞细胞毒性的新方法
- 批准号:
8676463 - 财政年份:2010
- 资助金额:
$ 44.04万 - 项目类别: