Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
基本信息
- 批准号:10361492
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAdultAfferent NeuronsArtificial ImplantsAxonBiophysicsBrainCellsCharacteristicsCodeCrista ampullarisCustomDataDendritesDevelopmentElectric StimulationElectrophysiology (science)EpithelialEquilibriumExhibitsFaceFiberFrequenciesFunctional disorderFutureGenerationsGeometryGerbilsGoalsHairHair CellsImplantIndividualIon ChannelKineticsLabelLaboratoriesMediatingMembrane PotentialsModelingMotionNatureNerve FibersOrganPatientsPatternPeripheralPharmacologic SubstancePharmacologyPharmacotherapyPhasePhysiologic pulsePhysiologicalPopulationPotassium ChannelPreparationProcessPropertyProsthesisProtocols documentationRegulationRodentRoleSensoryShapesSignal TransductionSliceStimulusSynapsesSystemTestingTetrodotoxinTissuesType I Hair CellType II Hair CellUtricle structureVariantVestibular Hair CellsWorkafferent nerveanalogcell typecombatcyclic-nucleotide gated ion channelsdensitydimorphismeffective therapyelectrical propertyequilibration disorderextracellularimplant designinsightmathematical modelnovelnovel therapeuticsotoconiapatch clamppostnatalreceptorregional differencerelating to nervous systemresponsetherapeutic targettoolvestibular prosthesisvoltagevoltage clamp
项目摘要
Project Summary
Approximately 8 million adults in the US suffer from balance impairment due to damage to the peripheral
vestibular system, but effective treatments for balance dysfunction are lacking. Vestibular hair cells within
vestibular canal and otolith organs convert motion into receptor potentials and sensory information is relayed to
the brain by action potentials (APs) in vestibular afferent nerves. Afferents in central zones (CZ) of vestibular
neuroepithelia exhibit different responses to vestibular stimuli than afferents in peripheral zones (PZ). The
nature of the neural code conveying vestibular information in distinct afferent types is poorly understood. There
are 3 types of vestibular afferents: calyx-only afferents innervate one or more type I hair cells, bouton dendrites
innervate type II hair cells and dimorphic afferents contact both hair cell types. Our goal is to elucidate distinct
AP firing mechanisms in afferents with calyx terminals to better understand vestibular coding. Calyx-only
afferents are present solely in CZ and have irregular firing patterns, whereas dimorphic afferents exist in both
CZ and PZ and have regular firing patterns. To achieve our goal we will refine novel preparations of vestibular
cristae and utricles, developed by our laboratory, as tools to study calyx-bearing afferents in CZ and PZ of
gerbil neuroepithelia. Electrophysiological, hair bundle stimulation, immunohistochemical and pharmacological
approaches will allow characterization of ion channels in afferent fibers in developing and mature epithelia. In
Aim 1 we will determine the contributions of K+ channels and hyperpolarization-activated cyclic nucleotide-
gated channels to AP firing in CZ and PZ afferents. Aim 2 will test the hypotheses that Nav1.6 channels with
transient and resurgent characterisitics contribute uniquely to AP firing in mature PZ dimorphs. In Aim 3 we will
incorporate ion channel data from Aims 1 and 2 into a novel, custom-written three dimensional mathematical
model of the calyx to provide insight into our zonally-driven experimental findings. To determine how channel
localization directly impacts AP firing, identified channel types will be strategically placed on the inner and outer
faces of the calyx terminal and associated axon and channel density varied. Our results will clarify how sensory
information is conveyed and how zonal encoding is generated within segregated vestibular afferents. Our data
will inform development of vestibular neurotherapeutics targeting specific groups of ion channels in afferent
nerves. Existing vestibular prosthetic implants attempt to restore normal vestibular function by direct electrical
stimulation of vestibular afferents. A clearer understanding of AP generation and propagation within vestibular
afferent sub-types is needed to inform appropriate electrical stimulation parameters. Results from this work
could provide important new information on vestibular afferent coding and inform development of
pharmaceutical and electrical strategies to combat vestibular dysfunction.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Janet Rennie其他文献
Katherine Janet Rennie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Janet Rennie', 18)}}的其他基金
Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
- 批准号:
10599148 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Ion Channels and Excitability in the Peripheral Vestibular System
周围前庭系统的离子通道和兴奋性
- 批准号:
10219544 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Heterogeneity of responses in vestibular primary afferents
前庭初级传入反应的异质性
- 批准号:
9933645 - 财政年份:2019
- 资助金额:
$ 38.5万 - 项目类别:
PHARMACOLOGY OF THE TYPE I HAIR CELL/CALYX SYNAPSE
I 型毛细胞/花萼突触的药理学
- 批准号:
2471004 - 财政年份:1998
- 资助金额:
$ 38.5万 - 项目类别:
PHARMACOLOGY OF THE TYPE I HAIR CELL/CALYX SYNAPSE
I 型毛细胞/花萼突触的药理学
- 批准号:
6342336 - 财政年份:1998
- 资助金额:
$ 38.5万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 38.5万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 38.5万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 38.5万 - 项目类别:














{{item.name}}会员




