4/5 CAPER: Computerized assessment of psychosis risk
4/5 CAPER:精神病风险的计算机化评估
基本信息
- 批准号:10361301
- 负责人:
- 金额:$ 40.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersClinicalCollaborationsComputing MethodologiesDetectionDeteriorationDiagnosisDimensionsEarly DiagnosisEarly InterventionEarly identificationFoundationsFrequenciesFunctional disorderGenerationsGoalsHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionPsychopathologyPsychosesPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRiskRoleSample SizeSecondary PreventionSensitivity and SpecificitySeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthbaseclinical high risk for psychosisclinical practicecognitive testingcomputerizeddesignfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodnew therapeutic targetnext generationonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitrelating to nervous systemscreeningsocialtrait
项目摘要
Summary
Research suggests that early identification of individuals at clinical high risk (CHR) for psychosis may be
able to improve illness course. Studies suggest that early identification of CHR using specialized interviews
with help-seeking individuals (with attenuated psychosis symptoms) is a useful approach. This work has two
major limitations: 1) interview methods have limited specificity as only 20% of CHR individuals convert to
psychosis, and 2) the expertise needed to make CHR diagnosis is only accessible in a few academic centers.
We propose to develop a new psychosis symptom domain sensitive (PSDS) battery, prioritizing tasks that
show correlations with the symptoms that define psychosis and are tied to the neurobiological systems and
computational mechanisms implicated in these symptoms. To promote accessibility, we utilize behavioral tasks
that could be administered over the internet; this will set the stage for later research testing widespread
screening that would identify those most in need of in-depth assessment. To reach that goal we first need
determine which tasks are effective for predicting illness course and how this strategy compares to published
prediction methods. We propose to recruit 500 CHR participants, 500 help-seeking individuals, and 500
healthy controls across 5 sites with the following Aims: Aim 1A) To develop a psychosis risk calculator through
the application of machine learning (ML) methods to the measures from the PSDS battery. In an exploratory
ML analysis, we will determine the added value of combining the PSDS with self-report measures and
historical predicators; Aim 1B) We will evaluate group differences on the risk calculator score and hypothesize
that the risk calculator score of the CHR group will differ from help-seeking and healthy controls. We further
hypothesize that the risk calculator score of the CHR converters will differ significantly from groups of CHR
nonconverters, help-seeking and healthy controls. The inclusion of a help-seeking group is critical for
translating the risk-calculator into clinical practice, where the goal is to differentiate those at greatest risk for
psychosis from those with other forms of psychopathology; Aim 1C): Evaluate how baseline PSDS
performance relates to symptomatic outcome 2 years later examining: 1) symptomatic worsening treated as a
continuous variable, and 2) conversion to psychosis. We hypothesize that the PSDS calculator: 1) will predict
symptom course and, 2) that the differences observed between converters and nonconverters will be larger on
the PSDS calculator than on the NAPLS calculator. Aim 2) Use ML methods, as above, to develop calculators
that predict: 2A) social, and, 2B) role function deterioration, both observed over two years. Because negative
symptoms are more strongly linked to functional outcome than positive symptoms, we predict that negative
symptom mechanism tasks will be the strongest predictor of functional decline in both domains. This project
will provide a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge
computational methods that can be used to facilitate the earliest possible detection of psychosis risk.
摘要
研究表明,对精神病临床高危人群的早期识别可能是
能够改善病程。研究表明,通过专门的访谈及早识别慢性阻塞性肺疾病
与寻求帮助的个人(精神病症状减轻)是一种有用的方法。这部作品有两部
主要限制:1)面谈方法的特异性有限,因为只有20%的CHR个人转换为
2)只有少数几个学术中心才能获得进行慢性阻塞性肺病诊断所需的专业知识。
我们建议开发一种新的精神病症状领域敏感(PSDS)电池,对以下任务进行优先排序
显示出与定义精神病的症状的相关性,并与神经生物系统和
与这些症状有关的计算机制。为了提高可访问性,我们利用行为任务
这可以通过互联网进行管理;这将为以后的广泛研究测试奠定基础
进行筛选,以确定哪些人最需要进行深入评估。要实现这一目标,我们首先需要
确定哪些任务对预测病程是有效的,以及该策略与已公布的策略相比如何
预测方法。我们建议招募500名社区责任参与者,500名寻求帮助的个人和500名
5个地点的健康对照,目标如下:目标1)开发一个精神病风险计算器,通过
机器学习(ML)方法在PSDS电池检测中的应用。在探索性的
ML分析,我们将确定PSDS与自我报告措施相结合的附加值
历史预测者;目标1B)我们将评估风险计算器得分和假设方面的组差异
CHR组的风险计算器得分将与求助和健康对照组不同。我们进一步
假设CHR转换器的风险计算器分数将与CHR组显著不同
不转换、寻求帮助和健康控制。加入一个寻求帮助的小组对于
将风险计算器转化为临床实践,目标是区分那些风险最高的人
来自其他形式精神病理学的精神病;目标1C):评估基线PSD
表现与2年后检查的症状结果有关:1)症状恶化被视为
连续变量,以及2)转化为精神病。我们假设PSD计算器:1)将预测
症状进程和,2)在变流器和非变流器之间观察到的差异将在
PSDS计算器比NAPLS计算器更好。目的2)如上所述,使用ML方法开发计算器
这预示着:社交功能和角色功能退化,这两种情况都是在两年内观察到的。因为负面的
症状与功能结局的联系比阳性症状更强,我们预测阴性症状
症状机制任务将是这两个领域中功能下降的最强预测因子。这个项目
将提供下一代CHR电池,与疾病机制捆绑在一起,由尖端技术提供动力
可用于促进尽早检测精神病风险的计算方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY P STRAUSS其他文献
GREGORY P STRAUSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GREGORY P STRAUSS', 18)}}的其他基金
Cognitive Training for Emotion Regulation in Psychotic Disorders
精神障碍情绪调节的认知训练
- 批准号:
10090645 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
4/5 CAPER: Computerized assessment of psychosis risk
4/5 CAPER:精神病风险的计算机化评估
- 批准号:
10573158 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
Mechanisms Underlying Emotion Regulation Abnormalities in Youth at Clinical High-Risk for Psychosis
临床精神病高危青少年情绪调节异常的机制
- 批准号:
10011943 - 财政年份:2019
- 资助金额:
$ 40.23万 - 项目类别:
Motivated Attention and Avolition in Individuals with Schizophrenia
精神分裂症患者的动机性注意力和意志力
- 批准号:
8675678 - 财政年份:2013
- 资助金额:
$ 40.23万 - 项目类别:
Motivated Attention and Avolition in Individuals with Schizophrenia
精神分裂症患者的动机性注意力和意志力
- 批准号:
8730224 - 财政年份:2013
- 资助金额:
$ 40.23万 - 项目类别:
Motivated Attention and Avolition in Individuals with Schizophrenia
精神分裂症患者的动机性注意力和意志力
- 批准号:
8292111 - 财政年份:2010
- 资助金额:
$ 40.23万 - 项目类别:
Motivated Attention and Avolition in Individuals with Schizophrenia
精神分裂症患者的动机性注意力和意志力
- 批准号:
8139126 - 财政年份:2010
- 资助金额:
$ 40.23万 - 项目类别:
Motivated Attention and Avolition in Individuals with Schizophrenia
精神分裂症患者的动机性注意力和意志力
- 批准号:
8028878 - 财政年份:2010
- 资助金额:
$ 40.23万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant