Molecular Diagnostics using a Nanopore to Analyze Secretions from Single Cells
使用纳米孔分析单细胞分泌物的分子诊断
基本信息
- 批准号:10361196
- 负责人:
- 金额:$ 40.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressBT 474Binding ProteinsBiological MarkersBreast Cancer CellCatalogingCatalogsCategoriesCell AdhesionCell CommunicationCell Culture TechniquesCell physiologyCellsChargeCollectionComplexDataDiscriminant AnalysisDiscriminationDrug TargetingElectrodesEnzyme-Linked Immunosorbent AssayExhibitsExtracellular FluidFibroblastsFunctional disorderGaussian modelGenesGlassGoalsHumanImmunoassayInterstitial CollagenaseKnowledgeMCF7 cellMDA MB 231Mass Spectrum AnalysisMeasurementMeasuresMediatingMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMolecular WeightMusPI3 genePeptidesPhenotypePilot ProjectsPlasmaPositioning AttributePrognostic FactorPropertyProteinsRANTESResistanceSerumSignal TransductionSpeedStatistical StudyStreptavidinSurfaceTIMP1 geneTestingTimeTissue EngineeringTissuesbasecell typechemokinedrug discoveryelectric fieldembryonic stem cellimprovedinduced pluripotent stem cellintegrated circuitknowledge baselaser tweezermalignant breast neoplasmmolecular diagnosticsnanofluidicnanoporenotch proteinpreventpurgeresponsesingle cell analysissingle moleculespecific biomarkerstechnology research and developmenttime usetool
项目摘要
Project Summary
The proteins secreted from a cell constitute a complex subset of molecules referred to as the secretome.
They are key factors mediating cell-cell communication. So, eavesdropping on the secretome informs
molecular diagnostics, drug discovery and tissue engineering. The challenge then is to detect the proteins as
they are secreted only in minute amounts, and diluted and/or contaminated in culture. Moreover, since tissue is
heterogeneous, it is necessary to detect secretions from single cells, which is confounded by bulk-culture
analysis. So, sensitivity is paramount.
In response to the Focus Technology Research and Development solicitation, this proposal furnishes a
plan to develop a tool that uses a nanopore to interrogate the secretome of single cells with extreme, single
molecule sensitivity and high throughput. The blockades that develop in the ionic current through a nanopore,
when a secreted, charged molecule is impelled through it by an electric field, measure the molecular volumes
occluding the pore. A catalog of the blockades can be used to discriminate between different cellular
phenotypes non-destructively, quickly, in real-time, and to interrogate the secretome for specific biomarkers.
AIM #1: Single cell secretomics. As it reflects the different molecular constituencies comprising the
secretome, the blockade current distributions should reveal distinctive aspects unique to the cell-type. To prove
out this hypothesis, three categories of cells will be scrutinized: breast cancer cells; human induced pluripotent
stem cells and their derivatives; and mouse embryonic stem cells and their derivatives. Single cells will be
positioned with optical tweezers over a pore embedded in a microfluidic device and the resulting blockades will
be classified by the Cramér’s distance, ?, and the expression of specific biomarkers will be tracked in real-time.
AIM #2: Discriminant analysis of the single cell secretomes. To improve on ? for discriminating cell-types,
a Gaussian-mixture-model (GMM) will be implemented that captures the profile of proteins in a secretome.
This model will be fitted to the data with the number of components determined by a Bayesian Information
Criterion and classifier will be developed to discriminate cell-types in real-time. The GMM will infer which
proteins are up-/down-regulated in a cell, compared to the control, in an unbiased way.
AIM #3: Micro/Nanofluidic integrated circuits for improved throughput. To boost throughput, arrays of
eight nanopores will be fabricated and tested for concurrent single cell analysis. These arrays will be
embedded in a microfluidic device incorporating integrated pneumatic valves to be used to convey cells to
each pore, and each pore will be independently addressed by integrated electrodes for detecting blockades
and producing di-electrophoretic forces for positioning the cell (instead of optical tweezers). To slash the down-
time required to purge the microfluidic between measurements, fouling-resistant surfaces that relieve non-
specific binding of protein and prevent cell adhesion to either glass and/or PDMS microfluidics will be tested.
项目摘要
从细胞分泌的蛋白质构成称为分泌组的分子的复杂子集。
它们是介导细胞间通讯的关键因素。所以,窃听秘密基因组
分子诊断、药物发现和组织工程。接下来的挑战是检测这些蛋白质,
它们仅以微量分泌,并且在培养物中被稀释和/或污染。此外,由于组织
由于细胞的异质性,有必要检测单个细胞的分泌物,这会被大量培养所混淆
分析.所以,敏感是最重要的。
为响应分众科技研发征集,本提案征集了
计划开发一种工具,使用纳米孔来询问单细胞的分泌组,
分子灵敏度和高通量。在离子电流通过纳米孔时产生的阻塞,
当一个分泌的带电分子被电场推动通过它时,测量分子体积
堵塞孔隙。一个封锁的目录可以用来区分不同的细胞
非破坏性地、快速地、实时地检测表型,并询问分泌组的特异性生物标志物。
目的#1:单细胞分泌组学。因为它反映了不同的分子组成,
在分泌蛋白质组中,阻断电流分布应该揭示细胞类型特有的独特方面。证明
根据这一假设,将仔细研究三类细胞:乳腺癌细胞;人类诱导多能细胞;
干细胞及其衍生物;和小鼠胚胎干细胞及其衍生物。单细胞将是
用光学镊子定位在嵌入微流体装置中的孔上,
按克拉美距离分类,并实时跟踪特定生物标志物的表达。
目的#2:单细胞分泌组的判别分析。为了改进?为了区分细胞类型,
将实施高斯混合模型(GMM),其捕获分泌组中蛋白质的分布。
该模型将拟合到具有由贝叶斯信息确定的组分数量的数据。
将开发标准和分类器以实时区分细胞类型。GMM将推断出
与对照相比,蛋白质在细胞中以无偏的方式上调/下调。
目标#3:微/纳米流体集成电路,用于提高吞吐量。为了提高吞吐量,
将制造八个纳米孔并测试用于同时进行的单细胞分析。这些数组将
包埋在微流体装置中,该微流体装置包括集成的气动阀,用于将细胞输送到
每个孔和每个孔将通过用于检测阻塞的集成电极独立地寻址
并产生用于定位细胞的介电泳力(代替光镊)。把下面的-
测量之间清洗微流体所需的时间,减轻非污染的抗污染表面,
将测试蛋白质的特异性结合并防止细胞粘附到玻璃和/或PDMS微流体上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Li其他文献
Jun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Li', 18)}}的其他基金
Anopheles FBG: a novel malaria transmission-blocking vaccine target
按蚊FBG:一种新型的阻断疟疾传播的疫苗靶点
- 批准号:
10575260 - 财政年份:2022
- 资助金额:
$ 40.46万 - 项目类别:
Stroke Disordered Breathing and its Impact on Cognitive Decline in Aging, Alzheimer's Disease and Cerebral Amyloid Angiopathy
中风呼吸障碍及其对衰老认知能力下降、阿尔茨海默病和脑淀粉样血管病的影响
- 批准号:
10157596 - 财政年份:2020
- 资助金额:
$ 40.46万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
9805982 - 财政年份:2019
- 资助金额:
$ 40.46万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
10385893 - 财政年份:2019
- 资助金额:
$ 40.46万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
10552803 - 财政年份:2019
- 资助金额:
$ 40.46万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
10592436 - 财政年份:2019
- 资助金额:
$ 40.46万 - 项目类别:
Neuronal and Astrocytic Interaction in Recovery after Stroke
中风后恢复中神经元和星形胶质细胞的相互作用
- 批准号:
9973176 - 财政年份:2016
- 资助金额:
$ 40.46万 - 项目类别:
High-resolution map of human germline mutation patterns and inference of mutagenic mechanisms
人类种系突变模式的高分辨率图谱和诱变机制的推断
- 批准号:
9083570 - 财政年份:2016
- 资助金额:
$ 40.46万 - 项目类别:
Targeting mosquito FREP1 protein for malaria control
靶向蚊子 FREP1 蛋白控制疟疾
- 批准号:
9446355 - 财政年份:2015
- 资助金额:
$ 40.46万 - 项目类别: