Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
基本信息
- 批准号:10385893
- 负责人:
- 金额:$ 6.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-03-13
- 项目状态:已结题
- 来源:
- 关键词:AreaBioinformaticsBiologicalChronicClinicalComplexDataData AnalyticsDevelopmentDiabetes MellitusDiabetes preventionDietDimensionsDiseaseEarly DiagnosisEnvironmental Risk FactorEpidemiologistEpidemiologyEtiologyFollow-Up StudiesFutureGene ProteinsGenesGeneticGenotype-Tissue Expression ProjectGoalsHealth ProfessionalHispanic Community Health Study/Study of LatinosInflammationInflammatoryKnowledgeLimesMediatingMentorsMetabolicMethodologyMultiomic DataNational Institute of Diabetes and Digestive and Kidney DiseasesNested Case-Control StudyNon-Insulin-Dependent Diabetes MellitusNurses&apos Health StudyNutritionalPathogenicityPathway interactionsPlasmaPositioning AttributePredispositionPreventionProspective cohort studyProteinsProteomicsQiResearchResourcesRoleStudy of LatinosSystemSystems BiologyTechnologyTrainingbiobankbiomarker developmentcareerdiabetes riskdietarygenetic architecturegenomic dataimprovedinflammatory markermetabolomicsmultidimensional datamultiple omicsnovelprospectiveprotein metaboliteskillstherapeutic targettraining opportunitytranscriptomics
项目摘要
ABSTRACT
The etiology of type 2 diabetes (T2D) likely involves a complex interaction of polygenic, metabolic, and
environmental factors including diet. Accumulating experimental, epidemiological, and clinical evidence
supports a pathogenic role of chronic inflammation in T2D development. However, the precise mechanisms
underlying these findings are largely unknown, and current evidence on the causal relationships between
specific inflammatory pathways and T2D risk is inconclusive. Advances in omics technologies have led to
the identification of genes and metabolites associated with T2D risk, but data on mechanisms and causality
are still very limited. Multi-omics integration in the framework of systems epidemiology may provide new
avenues to enhance our understanding of disease mechanisms. To systematically investigate the relation
between chronic inflammation and T2D, I propose to examine 3 Specific Aims by leveraging the rich
resources in the UK Biobank, Nurses’ Health Studies (NHS), Health Professional Follow-up Study (HPFS),
Hispanic Community Health Study/Study of Latinos (SOL), and Genotype-Tissue Expression project
(GTEx). In Aim 1 [K99], I will integrate existing genomic data from the UK Biobank, NHS/HPFS, SOL, and
transcriptomic data in the GTEx to examine shared genetic architectures between systemic inflammatory
markers and T2D and whether polygenic susceptibility to chronic inflammation confers T2D risk. Meanwhile,
I will receive extensive training in T2D systems biology and cutting-edge high-dimensional data analytics
and bioinformatics. In Aim 2 [R00], I will integrate dietary and metabolomic data to examine metabolomic
profiles mediating the association between dietary inflammatory potentials and T2D risk in the prospective
NHS/HPFS and the SOL. In Aim 3 [R00], I will conduct plasma proteomic profiling in a nested case-control
study within the NHS to identify inflammatory protein networks in relation to T2D risk, and as a Secondary
Aim, integrate findings from Aim 1-3 to explore T2D-related pathways co-regulating at multiple biological
dimensions. Findings from this project may improve the understanding of inflammatory mechanisms
underlying T2D and identify novel targets/pathways suitable for early detection and prevention. I will be
mentored/advised by an interdisciplinary team that includes Dr. JoAnn Manson (diabetes epidemiologist),
Dr. Liming Liang (expert in statistical omics methodologies), Dr. Frank Hu (nutritional epidemiologist), Dr.
Peter Kraft, (statistical geneticist), Dr. Qibin Qi (genetic epidemiologist), Dr. Towia Libermann (expert in
proteomics), and Dr. Clary Clish (expert in metabolomics). The outstanding training opportunities with key
leaders in these areas will provide me advanced knowledge and skills, positioning me for a successful,
independent career as a diabetes epidemiologist with expertise in systems biology and integrated-omics.
This project aligns with the NIDDK’s goal of integrating multi-omics technologies into diabetes research.
摘要
2型糖尿病(T2 D)的病因可能涉及多基因、代谢和遗传的复杂相互作用。
环境因素包括饮食。积累实验、流行病学和临床证据
支持慢性炎症在T2 D发展中的致病作用。然而,精确的机制
这些发现的基础在很大程度上是未知的,目前的证据表明,
具体的炎症途径和T2 D风险是不确定的。组学技术的进步导致了
识别与T2 D风险相关的基因和代谢物,但有关机制和因果关系的数据
仍然非常有限。系统流行病学框架下的多组学整合可能提供新的
这有助于我们更好地了解疾病的机制。为了系统地研究
在慢性炎症和T2 D之间,我建议通过利用丰富的
英国生物银行的资源,护士健康研究(NHS),健康专业随访研究(HPFS),
西班牙裔社区健康研究/拉丁美洲人研究(SOL)和基因型-组织表达项目
(GTEx)。在目标1 [K99]中,我将整合来自英国生物库、NHS/HPFS、SOL和
GTEx中的转录组学数据,以检查全身性炎症性疾病之间共享的遗传结构。
标记物和T2 D以及对慢性炎症的多基因易感性是否赋予T2 D风险。同时,
我将接受T2 D系统生物学和尖端高维数据分析方面的广泛培训
和生物信息学。在目标2 [R 00]中,我将整合饮食和代谢组学数据,以检查代谢组学
在前瞻性研究中,
NHS/HPFS和SOL。在目标3 [R 00]中,我将在巢式病例对照中进行血浆蛋白质组学分析
NHS内的研究,以确定与T2 D风险相关的炎症蛋白网络,并作为次要研究,
目的,整合目的1-3的发现,探索T2 D相关通路在多种生物学行为中的共调节作用。
尺寸.该项目的发现可能会提高对炎症机制的理解
T2 D的潜在原因,并确定适合早期检测和预防的新靶点/途径。我将
由包括JoAnn曼森博士(糖尿病流行病学家)在内的跨学科团队指导/建议,
博士梁黎明(统计组学方法学专家),胡福兰博士(营养流行病学家),
Peter Kraft,(统计遗传学家),Qibin Qi博士(遗传流行病学家),Towia Libermann博士(
蛋白质组学)和Clary Clish博士(代谢组学专家)。出色的培训机会,
这些领域的领导者将为我提供先进的知识和技能,使我成为一个成功的,
作为一名糖尿病流行病学家,拥有系统生物学和集成组学方面的专业知识。
该项目符合NIDDK将多组学技术整合到糖尿病研究中的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Li其他文献
Jun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Li', 18)}}的其他基金
Anopheles FBG: a novel malaria transmission-blocking vaccine target
按蚊FBG:一种新型的阻断疟疾传播的疫苗靶点
- 批准号:
10575260 - 财政年份:2022
- 资助金额:
$ 6.75万 - 项目类别:
Stroke Disordered Breathing and its Impact on Cognitive Decline in Aging, Alzheimer's Disease and Cerebral Amyloid Angiopathy
中风呼吸障碍及其对衰老认知能力下降、阿尔茨海默病和脑淀粉样血管病的影响
- 批准号:
10157596 - 财政年份:2020
- 资助金额:
$ 6.75万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
9805982 - 财政年份:2019
- 资助金额:
$ 6.75万 - 项目类别:
Molecular Diagnostics using a Nanopore to Analyze Secretions from Single Cells
使用纳米孔分析单细胞分泌物的分子诊断
- 批准号:
10361196 - 财政年份:2019
- 资助金额:
$ 6.75万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
10552803 - 财政年份:2019
- 资助金额:
$ 6.75万 - 项目类别:
Chronic Inflammation and Type 2 Diabetes: A Multi-omics Approach
慢性炎症和 2 型糖尿病:多组学方法
- 批准号:
10592436 - 财政年份:2019
- 资助金额:
$ 6.75万 - 项目类别:
Neuronal and Astrocytic Interaction in Recovery after Stroke
中风后恢复中神经元和星形胶质细胞的相互作用
- 批准号:
9973176 - 财政年份:2016
- 资助金额:
$ 6.75万 - 项目类别:
High-resolution map of human germline mutation patterns and inference of mutagenic mechanisms
人类种系突变模式的高分辨率图谱和诱变机制的推断
- 批准号:
9083570 - 财政年份:2016
- 资助金额:
$ 6.75万 - 项目类别:
Targeting mosquito FREP1 protein for malaria control
靶向蚊子 FREP1 蛋白控制疟疾
- 批准号:
9446355 - 财政年份:2015
- 资助金额:
$ 6.75万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 6.75万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 6.75万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 6.75万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 6.75万 - 项目类别:
Discovery Grants Program - Individual