Analysis of Big Data Squared in Biomedical Studies
生物医学研究中的大数据平方分析
基本信息
- 批准号:10361461
- 负责人:
- 金额:$ 43.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-05 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAlzheimer&aposs DiseaseBig DataBig Data MethodsBrainBrain imagingChildhoodClinicalClinical DataCollaborationsCompanionsComplexComputer softwareDataData AnalysesData CollectionData SetDevelopmentDiagnosisDimensionsDiseaseEnvironmental Risk FactorEtiologyFunctional ImagingGenesGeneticGenetic studyGenomicsGroupingHeritabilityHumanImageJointsJournalsLongevityMapsMeasurementMethodologyMethodsModelingModernizationMolecularMultimodal ImagingNeurocognitionNeurocognitiveNeurodegenerative DisordersNeurosciencesOnset of illnessOutcomePathway interactionsPhenotypePhiladelphiaPreventionPrevention approachPsychiatryPsychologyPublic HealthPublicationsRadiogenomicsRecording of previous eventsResearchSchizophreniaSonStatistical MethodsStructureSubstance Use DisorderTechnologyTestingThe Cancer Imaging ArchiveThickTimeadvanced analyticsanalytical methodanalytical toolbasebiobankcancer imagingcognitive functioncohortcomputer scienceconnectomedisorder riskexperienceexperimental studygenetic analysisgenetic variantgenome analysisgenome wide association studygenomic datahigh dimensionalityimaging geneticsimaging studyinterestlarge scale datamembermethod developmentmultidisciplinaryneuroimagingneuropsychiatric disordernew technologynovelprecision medicinepredict clinical outcomepredictive modelingrapid growthscreeningsimulationstatisticssuccesstheoriestooluser friendly softwarewhite matterwhole genome
项目摘要
Project Summary/Abstract
With the rapid growth of modern technology, many large-scale biomedical studies generate massive datasets
with multi-modality imaging, genetic, neurocognitive, and clinical information from increasingly large cohorts.
We consider 6 publicly available datasets: the Human Connectome project (HCP) study, the UK biobank study,
the Pediatric Imaging, Neurocognition, and Genetics study, the Philadelphia Neurodevelopmental Cohort, the
Alzheimer's Disease Neuroimaging Initiative study, and the UNC early brain development study. Simultaneously
extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from
these big datasets may transform our understanding of how genetic variants impact brain structure and function,
cognitive function, and brain-related disease risk across the lifespan. This is critical for diagnosis, prevention,
and treatment of brain-related disorders (e.g., schizophrenia and Alzheimer's). However, the development of
methods for the joint analysis of high-dimensional imaging-genetic data, called big data squared, presents major
theoretical and computational challenges due to complexities of imaging phenotypes such as regional volumetric
measurements, cortical thickness maps, subcortical structures, structural and functional connectivity matrices,
white matter tracts, and activation images. We will address three imminent challenges in the analysis of big data
squared: (CH1) carrying out genome-wide association analysis for functional imaging phenotypes (e.g., white
matter tracts, cortical thickness, and subcortical structures); (CH2) carrying out genome-wide association anal-
ysis for high-dimensional imaging phenotypes with strong spatial structure (e.g., regional volumetric measure-
ments, and structural and functional connectivity matrices); and (CH3) integrating multi-modality imaging, ge-
netic, and clinical data to predict clinical outcomes (e.g., disease status or time-to-disease onset). To this end, we
will develop (Aim 1) a functional genome-wide association analysis (FGWAS) framework for (CH1); (Aim 2) a net-
work genome-wide association analysis (NGWAS) framework for (CH2); (Aim 3) a multi-scale prediction modeling
(MSPM) framework for (CH3); and (Aim 4) verify the efficacy of the newly developed analytical tools using simula-
tions and the 6 extremely valuable imaging genetic datasets. Finally, we will develop companion software for the
methods to be developed in this project. The software, which will provide much needed analytic tools for the big
data squared, will be disseminated to the public through http://c2s2.yale.edu/software/, https://github.com/BIG-
S2, http://odin.mdacc.tmc.edu/bigs2/software.html, and http://www.nitrc.org/. Our novel methods are applicable
to a variety of imaging genetic studies for neuropsychiatric disorders, major neurodegenerative diseases, sub-
stance use disorders, and normal brain development. A deeper understanding of genetic mechanism, brain
development, and neurocognitive maturation has the potential to inspire new and urgently needed approaches to
prevention, diagnosis, and treatment of many illnesses (e.g., schizophrenia and Alzheimer's).
项目总结/摘要
随着现代科技的快速发展,许多大规模的生物医学研究产生了大量的数据集
多模态成像,遗传,神经认知和临床信息,从越来越大的队列。
我们考虑了6个公开可用的数据集:人类连接组项目(HCP)研究,英国生物银行研究,
儿科成像、神经认知和遗传学研究,费城神经发育队列研究,
阿尔茨海默氏病神经影像学研究和早期大脑发育研究。同时
在神经成像和/或基因组学中提取和整合丰富多样的异质信息,
这些大数据集可能会改变我们对遗传变异如何影响大脑结构和功能的理解,
认知功能和脑相关疾病的风险。这对于诊断、预防、
以及脑相关疾病的治疗(例如,精神分裂症和阿尔茨海默氏症)。但发展
高维成像-遗传数据联合分析的方法(称为大数据平方)提出了主要的
由于成像表型的复杂性,如局部体积,
测量、皮质厚度图、皮质下结构、结构和功能连接矩阵,
白色物质束和激活图像。我们将解决大数据分析中的三个迫在眉睫的挑战
平方:(CH 1)进行功能成像表型的全基因组关联分析(例如,白色
物质束,皮质厚度和皮质下结构);(CH 2)进行全基因组关联分析,
用于具有强空间结构的高维成像表型的分析(例如,区域体积测量-
单元,以及结构和功能连接矩阵);以及(CH 3)整合多模态成像,
遗传学和临床数据来预测临床结果(例如,疾病状态或疾病发作时间)。为此我们
将开发(目标1)一个功能性全基因组关联分析(FGWAS)框架(CH 1);(目标2)一个净-
工作全基因组关联分析(NGWAS)框架(CH 2);(目的3)多尺度预测建模
(MSPM)框架(CH 3);和(目标4)使用模拟验证新开发的分析工具的有效性-
和6个非常有价值的成像遗传数据集。最后,我们将为
在这个项目中开发的方法。该软件将为大型企业提供急需的分析工具,
数据平方,将通过http://c2s2.yale.edu/software/,https://github.com/BIG-向公众传播
http://odin.mdacc.tmc.edu/bigs2/software.html和http://www.nitrc.org/。我们的新方法适用于
神经精神疾病、主要神经退行性疾病、亚神经系统疾病、
站姿使用障碍,大脑发育正常。更深入地了解遗传机制,大脑
发展,神经认知成熟有可能激发新的和迫切需要的方法,
预防、诊断和治疗许多疾病(例如,精神分裂症和阿尔茨海默氏症)。
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The emergence of a functionally flexible brain during early infancy.
- DOI:10.1073/pnas.2002645117
- 发表时间:2020-09-22
- 期刊:
- 影响因子:11.1
- 作者:Yin W;Li T;Hung SC;Zhang H;Wang L;Shen D;Zhu H;Mucha PJ;Cohen JR;Lin W
- 通讯作者:Lin W
Targeted Inference Involving High-Dimensional Data Using Nuisance Penalized Regression.
- DOI:10.1080/01621459.2020.1737079
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Sun Q;Zhang H
- 通讯作者:Zhang H
Depth importance in precision medicine (DIPM): a tree- and forest-based method for right-censored survival outcomes
- DOI:10.1093/biostatistics/kxaa021
- 发表时间:2022-01-01
- 期刊:
- 影响因子:2.1
- 作者:Chen, Victoria;Zhang, Heping
- 通讯作者:Zhang, Heping
Pros and cons of Mendelian randomization.
孟德尔随机化的优点和缺点。
- DOI:10.1016/j.fertnstert.2023.03.029
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Zhang,Heping
- 通讯作者:Zhang,Heping
On Genetic Correlation Estimation With Summary Statistics From Genome-Wide Association Studies.
- DOI:10.1080/01621459.2021.1906684
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Zhao, Bingxin;Zhu, Hongtu
- 通讯作者:Zhu, Hongtu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HEPING ZHANG其他文献
HEPING ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HEPING ZHANG', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.52万 - 项目类别:
Research Grant