Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
基本信息
- 批准号:10200874
- 负责人:
- 金额:$ 61.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-02 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAngiopoietin-2Bar CodesBindingBloodBlood VesselsBrainCathetersCellsCerebrospinal FluidChargeChildChildhoodChildhood Brain NeoplasmChildhood Malignant Brain TumorClinicClinicalClinical DataDataDevelopmentDiagnosisDiffuseDiseaseDoseDrug Delivery SystemsDrug KineticsDrug or chemical Tissue DistributionEncapsulatedEndocrine System DiseasesEngineeringExcisionExhibitsFoundationsGenetic EngineeringGliomaGrowthHistonesHumanImageInfratentorial NeoplasmsInfusion proceduresIntrathecal SpaceLabelLeptomeningesLesionLibrariesLigandsMacaca mulattaMalignant neoplasm of brainMapsMeasuresMetabolic Clearance RateMetastatic Neoplasm to the LeptomeningesMethodsModelingMultimodal ImagingNanotechnologyNeoplasm MetastasisNervous system structureNeuraxisOperative Surgical ProceduresPatientsPenetrationPeptide ReceptorPharmaceutical PreparationsPharmacodynamicsPolymersPositron-Emission TomographyPredispositionQuantum DotsRadiationRadiation Dose UnitRadiation induced damageRadiation therapyRadiation-Sensitizing AgentsResearch PersonnelResectedResolutionSafetySecondary toSpatial DistributionSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpinal CordSubarachnoid SpaceSurfaceSurface PropertiesSurvival RateSystemTherapeuticTissuesToxic effectWaterWorkbiocompatible polymerbiodegradable polymerbiomaterial compatibilityburden of illnesscancer cellchemotherapycisterna magnaclinical applicationclinical translationcognitive functiondesigndrug actiondrug distributiondrug efficacyeffective therapyefficacy evaluationexperiencefractionated radiationimaging approachimprovedinhibitor/antagonistmedulloblastomaminiaturizemouse modelnanoparticlenanoparticle deliveryneuro-oncologynonhuman primatenovelnovel strategiespre-clinicalradiation deliveryreconstructionsmall molecule
项目摘要
PROJECT SUMMARY / ABSTRACT
Although survival rates for children diagnosed with a primary malignant brain tumor have improved, radiation
induced damage to the developing nervous system remains a significant problem. Few treatment options are
available once malignant cells have metastasized to the leptomeninges that surround the brain and spinal cord.
Leptomeningeal metastasis (LM) cannot be surgically resected, and systemic chemotherapy is hindered by the
presence of the blood-brain and blood-spinal cord barriers, leaving high dose craniospinal radiation as the only
effective treatment option. Some investigators have administered therapeutics directly into the intrathecal space
with the hope that locally administered drugs will better reach LM. However, action of intrathecally administered
agents is limited by rapid clearance and inadequate tissue penetration as cerebrospinal fluid (CSF) turns over.
Furthermore, most traditional chemotherapeutics are poorly water soluble and cannot be administered to the
CSF at relevant concentrations. We have recently developed a novel approach for encapsulating the histone
deacetyle inhibitor (HDACI) quisinostat within biodegradable and biocompatible NPs (QNPs). Our preliminary
data demonstrate that intrathecally administered NPs distribute readily across the surfaces of the brain and
spinal cord, are well retained within the subarachnoid space, and localize with lesions to slow the growth of LM
in a murine model of metastatic medulloblastoma. Here, we propose a comprehensive approach for optimizing
the design of radiation sensitizing NPs for intrathecal drug delivery to treat LM. These NPs serve not just as a
stationary depot to prolong drug presence in the central nervous system but as mobile carriers that we predict
will selectively sensitize metastatic lesions to radiation. We will, (1) engineer the surface of NPs to further improve
their localization with LM, (2), determine the relationship between drug delivery and efficacy in models of
medulloblastoma, and, (3), establish species scaling of direct-to-CSF nanoparticle delivery. Treatments will be
evaluated in patient derived and genetically engineered models of medulloblastoma exhibiting LM. Fluorescent
barcoding, matrix assisted laser desorption ionization (MALDI), and positron emission tomography (PET)
imaging approaches will be used to precisely localize NP and drug delivery to LM with quantitative, cellular-level
resolution. By directly pairing multiple measures of delivery, activity, and efficacy, we expect to develop a
comprehensive understanding of barriers to effective drug delivery within the subarachnoid space. Most
importantly, these studies will advance new nanotechnology toward the clinic for better treatment of pediatric
brain tumors.
项目总结/摘要
尽管被诊断为原发性恶性脑肿瘤的儿童的存活率有所提高,
对发育中的神经系统的诱导损伤仍然是一个重要的问题。很少有治疗选择,
一旦恶性细胞转移到大脑和脊髓周围的软脑膜,
软脑膜转移(LM)不能手术切除,全身化疗受到肿瘤的阻碍。
血脑和血脊髓屏障的存在,使高剂量颅脊髓放射成为唯一的治疗方法。
有效的治疗选择。一些研究者已经将治疗剂直接施用到鞘内空间
希望局部给药能更好地到达LM。然而,鞘内给药
由于脑脊液(CSF)翻转,药物的快速清除和组织渗透不足,因此受到限制。
此外,大多数传统的化学治疗剂是水溶性差的,并且不能被施用至患者。
相关浓度的CSF。我们最近开发了一种新的方法来封装组蛋白
在生物可降解和生物相容性NP(QNP)中的脱乙酰基抑制剂(HDACI)quisinostat。我们的初步
数据表明鞘内给药的NP容易分布在整个脑表面,
脊髓,在蛛网膜下腔内保留良好,并与病变局部化,以减缓LM的生长
在转移性髓母细胞瘤的鼠模型中。在这里,我们提出了一个全面的优化方法,
设计用于鞘内药物递送以治疗LM的放射增敏NP。这些NP不仅仅是一个
固定的贮库,以延长药物在中枢神经系统中的存在,但作为移动的载体,我们预测
将选择性地使转移病灶对放射敏感。我们将(1)设计纳米粒子的表面,以进一步改善
它们与LM的定位,(2),确定药物递送和疗效之间的关系,在模型中,
髓母细胞瘤,和,(3),建立直接到CSF纳米颗粒递送的物种缩放。治疗将
在表现出LM的髓母细胞瘤的患者衍生和基因工程模型中进行评价。荧光
条形码、基质辅助激光解吸电离(MALDI)和正电子发射断层扫描(PET)
成像方法将用于精确定位NP和药物递送到LM,
分辨率通过直接配对交付,活动和功效的多个措施,我们希望开发一个
全面了解蛛网膜下腔内有效药物输送的障碍。最
重要的是,这些研究将推动新的纳米技术走向临床,以更好地治疗儿科疾病。
脑瘤
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachael W Sirianni其他文献
Rachael W Sirianni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachael W Sirianni', 18)}}的其他基金
Exploiting sex-dependent brain injury response for nanoparticle therapeutics
利用性别依赖性脑损伤反应进行纳米颗粒治疗
- 批准号:
10320959 - 财政年份:2021
- 资助金额:
$ 61.8万 - 项目类别:
Exploiting sex-dependent brain injury response for nanoparticle therapeutics
利用性别依赖性脑损伤反应进行纳米颗粒治疗
- 批准号:
10532166 - 财政年份:2021
- 资助金额:
$ 61.8万 - 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
- 批准号:
9811126 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
Targeting leptomeningeal metastasis in medulloblastoma
靶向髓母细胞瘤的软脑膜转移
- 批准号:
9917838 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
- 批准号:
10653853 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
Targeting Leptomeningeal Metastasis in Medulloblastoma
靶向髓母细胞瘤的软脑膜转移
- 批准号:
10829143 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
Intrathecal delivery of radiation sensitizing nanoparticles in pediatric neuro-oncology
放射增敏纳米颗粒在儿科神经肿瘤学中的鞘内递送
- 批准号:
10755398 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
Targeting leptomeningeal metastasis in medulloblastoma
靶向髓母细胞瘤的软脑膜转移
- 批准号:
10595323 - 财政年份:2019
- 资助金额:
$ 61.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.8万 - 项目类别:
Research Grant














{{item.name}}会员




