Intuitive Control of a Hybrid Prosthetic Leg During Ambulation

混合假肢在行走过程中的直观控制

基本信息

项目摘要

Project Summary/Abstract Most individuals with lower limb amputations use passive prostheses, which do not provide energy to assist with activities such as stair or ramp ascent or sit-to-stand transitions. This limits mobility, in particular for those with above-knee amputations. Powered leg prostheses could improve the mobility and community participation of such individuals; however, these devices are heavy, and current control systems require the user to manually transition between different ambulation activities, which is cumbersome. With prior R01 funding, we developed an adaptive, hierarchical pattern recognition control system that uses data from sensors on the prosthesis, and incorporates electromyographic (EMG) signals from the user, depending on their reliability, to determine user intent and enable safe prosthesis control with automatic, seamless transitions between ambulation activities. A mobile application allows for rapid tuning of the prosthesis and enables the user to choose between manual or automatic transitions. With other funding, we developed a novel prosthetic leg that can operate in passive mode —during level-ground walking or in active mode—during activities such as stair climbing or sit-to-stand transitions. This approach enables smaller, lighter motors, transmissions, and batteries, making our Hybrid Leg significantly lighter and quieter than other powered devices. Our long-term objective is to develop clinically viable technologies to improve the quality of life for lower limb amputees. A lightweight powered prosthesis with a safe, intuitive control system may increase mobility—facilitating employment, leisure, and community participation activities—and reduce the physical and psychological consequences of low activity. We will compare the Hybrid Leg with subjects' passive devices in both in-lab and home environments. In Aim 1, we will transition our adaptive control system to the Hybrid Leg, train users to walk with this device while the experimenter manually transitions the device between activity modes, and collect sensor data and EMG signals to create a user-specific pattern recognition control system. We will then determine the classification accuracy of this system. Aims 2 and 3 together constitute a randomized clinical trial, with AB-BA design, comparing the Hybrid leg with subjects' own passive devices. In Aim 2, we will provide advanced community-mobility training for either the subject's passive leg or the Hybrid leg, in random order, to meet both subject-specific and general activity goals necessary for community ambulation, and complete a full biomechanical assessment of ambulation activities such as stair or ramp ascent/descent and sit-to-stand transitions with that leg. In Aim 3, subjects will use the same leg for 4 weeks in their home and community, where activity and community participation will be monitored by a custom smartphone–based app. We will compare the number of steps taken and number of transitions between activities for each device. We expect that the control system will be safe, with a low classification error rate and without errors that may cause a fall. In addition, we hypothesize that, using the Hybrid leg, subjects will ambulate more and transition between activities more frequently, with biomechanics more similar to those of non-amputees.
项目概要/摘要 大多数下肢截肢者使用被动假肢,这种假肢不能提供能量来协助 诸如楼梯或坡道上升或从坐到站的转换等活动。这限制了行动能力,特别是对于那些患有 膝上截肢。动力腿假肢可以改善患者的活动能力和社区参与度 此类个人;然而,这些设备很重,并且当前的控制系统需要用户手动 不同的行走活动之间的转换很麻烦。利用之前的 R01 资金,我们开发了 自适应分层模式识别控制系统,使用来自假肢传感器的数据,以及 结合来自用户的肌电图 (EMG) 信号,根据其可靠性来确定用户 意图并通过步行活动之间的自动、无缝转换实现安全的假肢控制。一个 移动应用程序允许快速调整假肢,并使用户能够选择手动或 自动转换。利用其他资金,我们开发了一种可以在被动模式下运行的新型假肢 —在平地行走或处于主动模式期间 —在爬楼梯或坐站等活动期间 过渡。这种方法可以实现更小、更轻的电机、变速箱和电池,从而使我们的混合腿 比其他供电设备更轻、更安静。我们的长期目标是开发临床上可行的 改善下肢截肢者生活质量的技术。一种轻型动力假肢,具有安全、 直观的控制系统可以增加流动性——促进就业、休闲和社区参与 活动——并减少低活动对身体和心理的影响。我们将比较混合动力 在实验室和家庭环境中放置受试者无源设备的腿。在目标 1 中,我们将转变我们的适应性 混合腿的控制系统,训练用户使用该设备行走,同时实验者手动转换 设备在活动模式之间切换,并收集传感器数据和 EMG 信号以创建用户特定的模式 识别控制系统。然后我们将确定该系统的分类准确性。目标 2 和 3 一起构成一项随机临床试验,采用 AB-BA 设计,将混合腿与受试者自己的腿进行比较 无源器件。在目标 2 中,我们将为受试者的被动型或被动型提供高级社区流动性培训。 腿或混合腿,按随机顺序,以满足特定主题和一般活动目标所需的 社区步行,并完成步行活动的完整生物力学评估,例如爬楼梯或 用该腿进行斜坡上升/下降以及从坐到站的过渡。在目标 3 中,受试者将使用同一条腿 4 次 在他们的家中和社区中度过数周,其中的活动和社区参与将由定制人员进行监控 基于智能手机的应用程序。我们将比较所采取的步数和活动之间的转换次数 对于每个设备。我们期望控制系统是安全的,分类错误率低,并且没有 可能导致跌倒的错误。此外,我们假设,使用混合腿,受试者会走动更多 活动之间的转换更加频繁,生物力学与非截肢者更加相似。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levi John Hargrove其他文献

Levi John Hargrove的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levi John Hargrove', 18)}}的其他基金

A Neuromusculoskeletal Interface for Bionic Arms: A Randomized Crossover Study
仿生手臂的神经肌肉骨骼接口:随机交叉研究
  • 批准号:
    10577128
  • 财政年份:
    2023
  • 资助金额:
    $ 58.7万
  • 项目类别:
Understanding how Powered Componentry Impacts K2-Level Transfemoral Amputee Gait
了解动力组件如何影响 K2 级经股截肢者步态
  • 批准号:
    10585944
  • 财政年份:
    2023
  • 资助金额:
    $ 58.7万
  • 项目类别:
The Functional Importance of Powered Wrist Flexion/Extension and Simultaneous Control for Upper Limb Prostheses
上肢假肢动力手腕屈曲/伸展和同步控制的功能重要性
  • 批准号:
    10165765
  • 财政年份:
    2018
  • 资助金额:
    $ 58.7万
  • 项目类别:
The Functional Importance of Powered Wrist Flexion/Extension and Simultaneous Control for Upper Limb Prostheses
上肢假肢动力手腕屈曲/伸展和同步控制的功能重要性
  • 批准号:
    10450839
  • 财政年份:
    2018
  • 资助金额:
    $ 58.7万
  • 项目类别:
Intuitive Control of a Hybrid Prosthetic Leg During Ambulation
混合假肢在行走过程中的直观控制
  • 批准号:
    9789362
  • 财政年份:
    2014
  • 资助金额:
    $ 58.7万
  • 项目类别:
Adaptive Recalibration of a Prosthetic Leg Neural Control System
假肢神经控制系统的自适应重新校准
  • 批准号:
    8921846
  • 财政年份:
    2014
  • 资助金额:
    $ 58.7万
  • 项目类别:
Adaptive Recalibration of a Prosthetic Leg Neural Control System
假肢神经控制系统的自适应重新校准
  • 批准号:
    9054885
  • 财政年份:
    2014
  • 资助金额:
    $ 58.7万
  • 项目类别:
Intuitive Control of a Hybrid Prosthetic Leg During Ambulation
混合假肢在行走过程中的直观控制
  • 批准号:
    10456766
  • 财政年份:
    2014
  • 资助金额:
    $ 58.7万
  • 项目类别:
Pathophysiology and Rehabilitation of Neural Dysfunction
神经功能障碍的病理生理学和康复
  • 批准号:
    10612004
  • 财政年份:
    1992
  • 资助金额:
    $ 58.7万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了