Multimodal Biomarkers For Oropharyngeal Cancer

口咽癌的多模式生物标志物

基本信息

  • 批准号:
    10204964
  • 负责人:
  • 金额:
    $ 1.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-12 至 2021-10-31
  • 项目状态:
    已结题

项目摘要

Abstract Head and neck cancers are the fifth most common cancer type in the United States, with an overall survival rate lower than 50%. Although the incidence of other sub-sites of head and neck cancer has decreased steadily in past decades, the number of oropharyngeal squamous cell carcinoma (OPSCC) cases has increased significantly. Most OPSCC patients receive standard cancer therapy.4 However, the clinical outcomes vary significantly and are difficult to predict. Predicting early in treatment whether a tumor is likely to respond to treatment is one of the most difficult yet important tasks in providing individualized cancer care. Human papillomavirus (HPV) is a known driving oncogenic factor in oropharyngeal cancer, as well as a significant prognostic biomarker for patient survival. Retrospective studies conducted by the International Head and Neck Cancer Epidemiology Consortium (INHANCE) have demonstrated that clinical biomarkers have prognostic value in helping stratify OPSCC patients into groups with differing risks of death or disease progression. However, HPV-positive oropharyngeal cancer patients have similar rates of metastatic spread to HPV-negative patients. The same is true for patient groups stratified with other clinical biomarkers. More robust prognostic biomarkers are needed to accurately stratify patients for optimally effective treatment. MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that collectively control the expression of thousands of protein-coding genes. Multiple studies indicate that miRNAs are promising cancer biomarkers and play critical regulatory roles in oropharyngeal cancer. Imaging features extracted from medical images are an exciting new class of cancer biomarkers for characterizing tumor habitats. For several tumor sites, imaging biomarkers have shown promise in accurately separating favorable and unfavorable prognosis patients. However, current efforts to utilize high-dimensional multimodal biomarkers for treatment outcome prediction have been compromised by small patient numbers relative to the feature space dimensionality; feature redundancy, heterogeneity, and uncertainty; and patient cohorts with unbalanced outcomes. The correlation, independence, and complementary nature of multimodal biomarkers (imaging, miRNA, HPV, clinical, and histopathologic biomarkers) remains unexplored as well. The major goal of this research is to develop a multimodal biomarker-based model that can reliably predict subsets of OPSCC patients with low and high risks for treatment failure. The model will serve as a clinical decision-making tool. Specifically, we propose a novel principle and systematic machine learning-based strategy to effectively identify and seamlessly combine prognostic information carried by multimodal biomarkers. Aim 1: Identify prognostic multimodal biomarkers, given OPSCC patient data. Aim 2: Develop and test a comprehensive multimodal biomarker-based model for predicting OPSCC treatment outcomes. Aim 3: Assess the clinical benefit of the model for OPSCC patient stratification and individualized treatment.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hua Li其他文献

Hua Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hua Li', 18)}}的其他基金

Combined Imaging and RNA Analyses to Predict Head and Neck Cancer Recurrence
结合成像和 RNA 分析来预测头颈癌复发
  • 批准号:
    10909477
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
Multimodal Biomarkers For Oropharyngeal Cancer
口咽癌的多模式生物标志物
  • 批准号:
    10453653
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
Multimodal Biomarkers For Oropharyngeal Cancer
口咽癌的多模式生物标志物
  • 批准号:
    10559361
  • 财政年份:
    2019
  • 资助金额:
    $ 1.08万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了