Combined Imaging and RNA Analyses to Predict Head and Neck Cancer Recurrence
结合成像和 RNA 分析来预测头颈癌复发
基本信息
- 批准号:10909477
- 负责人:
- 金额:$ 67.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-04 至 2024-09-03
- 项目状态:已结题
- 来源:
- 关键词:AddressBehaviorBeliefBiologicalBiological MarkersCellular StructuresCharacteristicsClinicalClinical TreatmentComputer ModelsDataDecision MakingDistantFailureFutureGoalsHead and Neck CancerHead and Neck Squamous Cell CarcinomaHeterogeneityHumanHuman PapillomavirusImageInstitutionLearningMagnetic Resonance ImagingMethodsMicroscopicModalityModelingMonitorNatureNeoplasm MetastasisNetwork-basedOperative Surgical ProceduresOrganismOropharyngealOutcomePatient CarePatientsPerformancePlayPopulationPositron-Emission TomographyPrediction of Response to TherapyPrognosisPrognostic MarkerRNARadiation therapyRecurrenceRecurrent Malignant NeoplasmRecurrent tumorReportingRetrospective StudiesRoleSolidSurvival RateTechniquesTestingTherapeuticTissuesTrainingTreatment FailureTreatment outcomeUncertaintyWorkX-Ray Computed Tomographybiomarker selectionbiomarker signaturecancer recurrencechemotherapyclinical applicationclinical decision-makingclinically relevantcohortdeep learninggenerative adversarial networkhistological imageimaging biomarkerimprovedindividual patientmalignant mouth neoplasmmultimodal datamultimodalityneural networkneural network classifierpatient stratificationpatient variabilitypersonalized carepersonalized medicinepredictive markerprognosticprognostic modelprognostic valueradiological imagingresponseserial imagingtheoriestooltreatment responsetreatment strategytumortumor progression
项目摘要
Title: Combined Imaging and RNA Analyses to Predict Head and Neck Cancer Recurrence
ABSTRACT
Head and neck squamous cell carcinomas (HNSCCs) encompass a diverse group of tumors that generally are
aggressive in their biological behavior. Recurrence is the most common form of treatment failure for HNSCC
patients receiving standard therapy. Approximately 50% of HNSCC cases will develop recurrence, and the 5-
year survival rate for recurrent patients is only 16~36%. Early prediction of HNSCC recurrence is one of the most
challenging yet important tasks for stratifying HNSCC patients and supporting personalized treatment strategies
to improve patient care. We and others have shown that human ribonucleic acids (RNAs) and human
papillomavirus (HPV) RNAs are promising biomarkers and play critical regulatory roles in HNSCC. Radiologic
imaging biomarkers derived from PET, CT, and MR imaging data have shown promise in stratifying patients
with favorable and unfavorable prediction for treatment response. Their non-invasive characteristics also allow
for convenient and longitudinal monitoring of tumor progression and heterogeneous response during the
treatment course. Histologic images provide key information about microscopic structure of cells and tissues of
organisms. Recent reports and our preliminary studies have shown that histologic imaging biomarkers, can
aid in clinical decision-making by identifying metastases, subtyping and grading tumors, and predicting treatment
failures. Clinicopathologic biomarkers show prognostic values through retrospective studies. Still, many
HNSCC patients have recurred tumors despite favorable prediction by these biomarkers.
The major goal of this study is to develop a comprehensive and robust computational model for early
prediction of HNSCC treatment failures leading to tumor recurrence. We will integrate our recently developed
advanced learning-based techniques to build prognostic models using about 1,200 patient cases collected from
two institutions. The prognostic model will form a solid basis for individualized care of HNSCC patients based on
predicted treatment outcomes. Moreover, our work is expected to discover the correlations among multimodal
data, leading to dynamic patient stratification to support adaptive treatment strategies.
标题:联合影像和RNA分析预测头颈部癌症复发
摘要
头颈部鳞状细胞癌(HNSCCs)包括一组不同的肿瘤,通常是
在生物行为上具有攻击性。复发是HNSCC治疗失败的最常见形式
接受标准治疗的患者。大约50%的HNSCC病例会复发,而5-
复发患者的一年生存率仅为16~36%。HNSCC复发的早期预测是最重要的之一
对HNSCC患者进行分层和支持个性化治疗策略具有挑战性但也是重要的任务
以改善病人护理。我们和其他人已经证明,人类核糖核酸(RNA)和人类
人乳头瘤病毒(HPV)RNA是一种很有前途的生物标志物,在HNSCC中起着重要的调节作用。放射学
来自PET、CT和MR成像数据的成像生物标记物在患者分层方面显示出希望
对治疗反应有有利和不利的预测。它们的非侵入性特征也允许
为了方便和纵向监测肿瘤进展和在治疗期间的异质性反应
治疗疗程。组织学图像提供了有关细胞和组织的微观结构的关键信息
有机体。最近的报道和我们的初步研究表明,组织成像生物标记物可以
通过识别转移、对肿瘤进行亚型和分级以及预测治疗来帮助临床决策
失败。通过回顾研究,临床病理生物标记物具有预测预后的价值。尽管如此,仍有许多人
尽管这些生物标志物预测良好,但HNSCC患者仍有肿瘤复发。
这项研究的主要目标是开发一个全面和健壮的计算模型,用于早期
预测HNSCC治疗失败会导致肿瘤复发。我们将整合我们最近开发的
先进的基于学习的技术,使用从以下来源收集的约1,200例患者建立预后模型
两个机构。该预后模型将为HNSCC患者的个体化护理奠定坚实的基础
预测治疗结果。此外,我们的工作有望发现多式联运之间的关联
数据,导致动态的患者分层,以支持适应性治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hua Li其他文献
Hua Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hua Li', 18)}}的其他基金
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 67.31万 - 项目类别:
Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
- 批准号:
2337351 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319849 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Continuing Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 67.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)