Fluorescent enhancement of the nitrogen vacancy center in nanoscale diamond for bioimaging applications

用于生物成像应用的纳米金刚石中氮空位中心的荧光增强

基本信息

  • 批准号:
    10205094
  • 负责人:
  • 金额:
    $ 10.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-10 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract In this body of work the Wolcott laboratory will develop chemical methodologies for the functionalization of nanoscale diamond with the aim of increasing the fluorescent rate of the nitrogen vacancy center (NVC) via plasmonics. We are focusing our expertise to understand chemical reactivity at the high-pressure high- temperature diamond surface and investigate the mechanisms for diamond-metal nanostructure self-assembly. Advancements in bioimaging with fluorescent nanodiamonds (FNDs) are hindered by a lack of robust chemistry to modify their surface. Further, no advances for increasing the NVC fluorescent rate have been realized. In total, these challenges have resulted in poor colloidal stability, poor targeting in staining protocols and no simple routes to enhance FND emission rates. We will address these challenges to advance the surface chemistry of nanoscale diamond, build coherent models of chemical reactivity and increase the efficacy for self-assembly with metallic nanostructures. The nitrogen vacancy center in 25-100 nm crystallites have shown fluorescent enhancement, but only with tedious movement of these structures by atomic force microscopy which is incompatible with cell imaging. A major goal of the study is to understand how tuning the surface chemistry will drive self-assembly, how dielectric layer thickness effects fluorescent rates and the production of FND-metallic constructs with robust properties for bioimaging. Further, we envision using these FND constructs in fluorescent imaging studies with pancreatic cancer cell lines. Our aims include both fundamental studies and applied fluorescence imaging investigations. The goals of the proposed work include: 1) modification of the FND surface with wet chemical and gas phase chemistry, (2) application of the modified FND for metallic nanostructure assembly and (3) the fundamental mechanisms of NVC fluorescence enhancement for imaging applications. Our surface chemistry will focus on covalent bond formation of low-Z elements such as nitrogen and silicon oxide to the ND surface. To probe the surface we will use overlapping techniques that are laboratory and synchrotron-based spectroscopies. Techniques include dynamic light scattering, FTIR, wavelength dependent X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS). Surface information will then be used to direct our chemical methodology and protocol development. The covalent moieties will then act as the molecular anchors to drive their assembly with metal nanostructures and to grow metallic shells. FND emission properties will be investigated with confocal microscopy to determine fluorescent rates and radiative lifetimes. Finite-difference time-domain simulations will guide our chemistry and establishes a target of a 150x fold increase for the NVC fluorescent rate. This work will impact fundamental and applied research where the NVC is used for magnetic and electric field imaging, thermometry and long-term bioimaging applications. PI-Wolcott is an expert in diamond surface chemistry and the use of nanoparticles for biological staining. This project will be supported by the active collaborations with nanomaterial expert Prof. Nicholas Melosh at Stanford University and surface scientist Dr. Dennis Nordlund at the Stanford Synchrotron Radiation Lightsource (SSRL). The prime location of San Jose State University (SJSU) in the Bay Area provides unique opportunities for science to be accomplished at near-by research centers such as SSRL and The Molecular Foundry at Lawrence Berkeley National Laboratory. A highly motivated team of undergraduate researchers in the Wolcott laboratory at SJSU are taking full advantage of this environment and are advancing the initial aims of this proposal as detailed in the Research Strategy.
项目总结/摘要 在这项工作中,沃尔科特实验室将开发用于官能化的化学方法。 纳米级金刚石,目的是增加氮空位中心(NVC)的荧光率, 等离子体我们专注于我们的专业知识,以了解化学反应在高压高- 温度金刚石表面,并探讨了金刚石-金属纳米结构自组装的机制。 荧光纳米金刚石(FND)生物成像的进展受到缺乏稳健化学的阻碍 来改变它们的表面。此外,还没有实现提高NVC荧光率的进展。总的来说, 这些挑战导致胶体稳定性差、染色方案靶向差并且没有简单的路线 以提高FND排放率。我们将应对这些挑战,以推进表面化学, 纳米级金刚石,建立化学反应的连贯模型,并提高自组装的效率, 金属纳米结构。在25-100 nm微晶中的氮空位中心显示出荧光 增强,但只有通过原子力显微镜对这些结构进行繁琐的移动, 与细胞成像不兼容。这项研究的一个主要目标是了解如何调整表面化学将 驱动自组装,介电层厚度如何影响荧光速率和FND-金属的生产 具有用于生物成像的稳健性质的构建体。此外,我们设想使用这些FND构建体进行荧光免疫分析。 胰腺癌细胞系的成像研究。 我们的目标包括基础研究和应用荧光成像调查。的目标 提出的工作包括:(1)用湿化学和气相化学对FND表面进行改性,(2) 改进的FND在金属纳米结构组装中的应用;(3) NVC荧光增强成像应用。我们的表面化学将专注于共价键 在ND表面形成氮、氧化硅等低Z元素。为了探测地表, 使用实验室和同步加速器光谱学的重叠技术。技术包括 动态光散射、FTIR、波长依赖的X射线光电子能谱(XPS)和近边 X射线吸收精细结构(NEXAFS)。表面信息将被用来指导我们的化学 方法和方案制定。然后,共价部分将充当分子锚来驱动 它们与金属纳米结构的组装以及生长金属壳。FND发射特性将是 用共聚焦显微镜研究以确定荧光速率和辐射寿命。有限差分 时域模拟将指导我们的化学反应,并为NVC建立一个150倍增长的目标 荧光率这项工作将影响基础和应用研究,其中NVC用于磁性 以及电场成像、测温和长期生物成像应用。 PI-Wolcott是金刚石表面化学和纳米颗粒用于生物染色的专家。这 该项目将得到与斯坦福大学纳米材料专家尼古拉斯·梅洛什教授的积极合作的支持 大学和表面科学家丹尼斯·诺德伦德博士在斯坦福大学同步辐射光源(SSRL)。 圣何塞州立大学(SJSU)在湾区的黄金地段为科学提供了独特的机会 在附近的研究中心,如SSRL和劳伦斯伯克利的分子铸造厂, 国家实验室。在SJSU的沃尔科特实验室,一个充满活力的本科生研究团队 正在充分利用这一环境,并正在推进这一建议的初步目标,详见 研究战略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abraham Wolcott其他文献

Abraham Wolcott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.84万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了