Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
基本信息
- 批准号:10371520
- 负责人:
- 金额:$ 14.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAlzheimer&aposs DiseaseAreaAwardBenchmarkingBiological MarkersBiometryBrainCharacteristicsClinicalCognitiveDataData AnalysesDementiaDevelopmentDoctor of MedicineDoctor of PhilosophyElectroencephalographyEpidemiologyFoundationsFunctional ImagingFunctional Magnetic Resonance ImagingGoalsImageImaging TechniquesImpaired cognitionIndividualInterventionKnowledgeLeadLearningMentorsMethodologyMethodsMonitorMultimodal ImagingNatureNeurodegenerative DisordersNeurologic DysfunctionsNeurologyNeurosciencesPatternPersonsProceduresResearchResearch PersonnelRestRiskSamplingSymptomsTechnical ExpertiseTestingTimeTrainingTreatment EfficacyUnited StatesValidationWorkbiomedical imagingcareercognitive changecognitive performancecognitive testingearly screeningefficacious treatmentfeature extractionfeature selectionhigh dimensionalityimaging biomarkerimaging modalitymachine learning frameworkmachine learning methodmachine learning modelmethod developmentmultidisciplinarymultimodal neuroimagingneuroimagingneuroimaging markernext generationpredictive modelingpreventradiological imagingstatistical and machine learningsuccesstherapy designtreatment effect
项目摘要
Project Summary/Abstract
The objective of this proposal is to provide a robust course of training for Fei Jiang, Ph.D., a candidate with
an excellent foundation in statistical and machine learning research, to enable her to become an independent
investigator in the field of quantitative data analysis and statistical/machine learning methods development for
neuroimaging research. The proposed research aims to extract dynamic resting-state functional connectivity
from multimodality imaging and use them for the prediction of cognitive decline. The central hypothesis is that
the resting state functional connectivity changes over the imaging acquisition period, and this dynamic pattern is
crucial for the optimal prediction of cognitive decline. Towards proving this hypothesis, a unique machine learn-
ing framework is proposed to (1) robustly extract dynamic resting-state functional connectivity from multimodality
imaging; (2) identify the important features that are associated with individuals' cognitive scores; and (3) predict
cognitive decline using the identified important features. Successful completion of the proposed research will
provide the next generation machine learning framework for the extraction and analysis of dynamic resting-state
functional connectivity and lead to potential endpoints that can be used in the assessment of treatment effects.
Recognizing the multidisciplinary nature of the work proposed, the author will be mentored and work closely with
an expert committee from multiple scientific areas of relevance to the project (Neuroimaging, Neurodegenerative
disease, Biostatistics): Srikantan Nagarajan (primary mentor), Ph.D., Department of Radiology and Biomedical
Imaging, Ashish Raj (co-mentor), Ph.D., Department Radiology and Biomedical Imaging, William W. Seeley (ad-
visor), M.D., Ph.D., Department of Neurology, John Kornak (advisor), Ph.D., Department of Epidemiology and
Biostatistics, Marilu Gorno Tempini (collaborator), M.D., Ph.D., Department of Neurology, Charles McCulloch
(collaborator), Ph.D., Department of Epidemiology and Biostatistics. This committee will be coordinated by Dr.
Nagarajan. The goal is that by the end of the K25, Dr. Jiang will have the requisite knowledge, technical skills,
and expertise to submit a successful R01 proposal that integrates her expertise in statistical and machine learn-
ing methods with a knowledge of the questions and approaches pertaining to imaging in neuroscience, acquired
through this training period.
项目总结/摘要
本提案的目的是为蒋飞博士提供一个强大的培训课程,候选人,
在统计和机器学习研究方面有着良好的基础,使她能够成为一名独立的
定量数据分析和统计/机器学习方法开发领域的研究员,
神经影像学研究。该研究旨在提取动态静息态功能连接
并将其用于预测认知能力下降。核心假设是,
静息状态功能连接性在成像采集周期内变化,并且该动态模式是
对认知能力下降的最佳预测至关重要。为了证明这个假设,一个独特的机器学习-
提出了一种新的结构框架:(1)从多模态中鲁棒地提取动态静息态功能连接
成像;(2)识别与个体认知评分相关的重要特征;(3)预测
认知能力下降使用已识别的艾德重要特征。成功完成拟议的研究将
为动态静止状态的提取和分析提供了下一代机器学习框架
功能连接性,并导致可用于评估治疗效果的潜在终点。
认识到拟议工作的多学科性质,作者将得到指导,并与
来自与项目相关的多个科学领域的专家委员会(神经影像学、神经退行性疾病
疾病,生物统计学):Srikantan Nagarajan(主要导师),博士,放射学和生物医学系
成像,Ashish Raj(共同导师),博士,放射学和生物医学成像部,威廉W。塞利(ad-
visor),医学博士,哲学博士、神经病学系,John Kornak(顾问),博士,流行病学系
生物统计学,Marilu Gorno Tempini(合作者),医学博士,哲学博士、神经科,Charles McCulloch
(合作者),博士,流行病学和生物统计学系。该委员会将由博士协调。
纳加拉詹我们的目标是,到K25结束时,蒋博士将拥有必要的知识,技术技能,
和专业知识来提交一份成功的R 01提案,该提案将她在统计和机器学习方面的专业知识整合在一起-
学习方法,了解与神经科学成像有关的问题和方法,获得
在这段训练期间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
fei jiang其他文献
fei jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('fei jiang', 18)}}的其他基金
Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
- 批准号:
10677543 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.53万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Studentship