The role of acetylcholine signaling in the axonal wiring of cortical interneurons

乙酰胆碱信号在皮质中间神经元轴突布线中的作用

基本信息

  • 批准号:
    10372840
  • 负责人:
  • 金额:
    $ 23.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The cholinergic system, using acetylcholine (ACh) as a neurotransmitter, shapes plasticity and cognitive functions in the adult cortex by tuning cortical activity, and has been implicated in brain disorders such as epilepsy, attention-deficit hyperactivity disorder, depression, and schizophrenia. However, the role of ACh signaling in development of cortical circuits in normal and diseased conditions remains poorly understood. In particular, little is known about whether and how ACh signaling regulates the wiring of inhibitory interneurons (INs), cellular components critical for cortical computations. Cortical INs generally develop highly branched axons to establish local, dense circuit modules. Despite representing a crucial event during the wiring of IN circuits, the cellular and molecular mechanisms underlying IN axonal arborization remain elusive. The objective of our proposal is to establish the role of ACh signaling in shaping IN axonal arbors in vivo. We will also provide evidence that disease-relevant mutations in genes that are essential for ACh signaling could impact IN axonal branching, and that the axonal phenotype could be ameliorated by manipulating downstream components in ACh signaling. To achieve this goal, we will perform a series of experiments using the chandelier cell (ChC), which exclusively innervates axon initial segments of pyramidal neurons (PNs) and thus powerfully controls spike generation in PNs. Because of its stereotypy of the axonal organization, the ChC serves as an ideal model to study IN axonal morphogenesis. Our preliminary data has shown that (1) Axonal filopodia arising from varicosities serve as precursors of branches in vivo, (2) Filopodia initiation as well as the basal Ca2+ levels in ChC axonal varicosities are regulated by signaling from nicotinic AChRs (nAChRs) to T-type voltage dependent calcium channels (T- VDCCs), independently of action potentials/network activity, (3) CRISPR/Cas9-mediated T-VDCC loss-of- function (LOF) in single ChCs significantly reduces their axonal branching points, and (4) Systemic nicotine administration to developing postnatal mice increases ChC axonal arbors. Based on these results, we propose to test the hypothesis that the nAChR-T-VDCC signaling pathway shapes ChC axonal arborization, and disease- relevant mutations in ACh signaling molecules cause wiring defects in ChCs. In Aim 1, we will elucidate the role of the nAChR-T-VDCC signaling pathway in ChC axonal arborization in vivo. In Aim 2, we will determine the effect of the epilepsy-related gain-of-function (GOF) mutation in nAChRs on ChC axonal arborization, and elucidate whether manipulating T-VDCCs can be a way to revert the nAChR GOF phenotype. Our study will provide first evidence for the developmental role of ACh signaling in the wiring of INs in the normal and diseased cortices as well as a novel hint for developing strategies to prevent and ameliorate brain disorders associated with ACh signaling.
项目总结/摘要 胆碱能系统,使用乙酰胆碱(ACh)作为神经递质,塑造可塑性和认知功能。 通过调节皮质活动在成人皮质中起作用,并且与脑疾病如癫痫, 注意力缺陷多动障碍抑郁症和精神分裂症。然而,ACh信号转导在 在正常和患病条件下的皮层回路的发育仍然知之甚少。特别是,很少 关于ACh信号传导是否以及如何调节抑制性中间神经元(IN)的布线, 皮质计算的关键部件。皮质IN通常发育高度分支的轴突以建立 局部密集电路模块。尽管代表了IN电路布线过程中的关键事件,但蜂窝和 IN轴突树枝化的分子机制仍然是难以捉摸的。 我们的建议的目的是建立ACh信号在塑造IN轴突乔木中的作用 in vivo.我们还将提供证据表明,ACh所必需的基因中的疾病相关突变 信号传导可以影响IN轴突分支,并且轴突表型可以通过 操纵ACh信号传导中的下游成分。为了实现这一目标,我们将执行一系列 实验中使用枝形吊灯细胞(ChC),它专门支配锥体神经元的轴突起始段 神经元(PN),从而有力地控制PN中的尖峰生成。 ChC由于其轴突结构的定型性,是研究IN轴突的理想模型 形态发生我们的初步资料表明:(1)由静脉曲张引起的轴突丝状伪足, (2)ChC轴突静脉曲张中丝状伪足的起始以及基础Ca ~(2+)水平 通过烟碱型AChR(nAChR)向T型电压依赖性钙通道(T-Ca 2+)的信号传导来调节 (3)CRISPR/Cas9介导的T-VDCC缺失, 单个ChC中的LOF功能(LOF)显著降低其轴突分支点,以及(4)全身性尼古丁 对发育中的出生后小鼠给药增加ChC轴突主干。基于这些结果,我们建议 为了检验nAChR-T-VDCC信号通路形成ChC轴突分支和疾病的假设, ACh信号分子中的相关突变导致ChC中的布线缺陷。在目标1中,我们将阐明 nAChR-T-VDCC信号通路在体内ChC轴突分支中的作用。在目标2中,我们将确定 nAChRs中癫痫相关的功能获得性(GOF)突变对ChC轴突分支的影响, 阐明操纵T-VDCC是否可以是逆转nAChR GOF表型的一种方式。 我们的研究将为ACh信号在神经元连接中的发育作用提供第一个证据。 正常和患病的皮质以及制定预防和改善大脑策略的新提示 与ACh信号相关的疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROKI TANIGUCHI其他文献

HIROKI TANIGUCHI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROKI TANIGUCHI', 18)}}的其他基金

The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
  • 批准号:
    10578784
  • 财政年份:
    2022
  • 资助金额:
    $ 23.63万
  • 项目类别:
Wiring and developmental principles of inhibitory neocortical circuits
抑制性新皮质回路的布线和发育原理
  • 批准号:
    10478363
  • 财政年份:
    2022
  • 资助金额:
    $ 23.63万
  • 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
  • 批准号:
    10523360
  • 财政年份:
    2021
  • 资助金额:
    $ 23.63万
  • 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
  • 批准号:
    10558671
  • 财政年份:
    2021
  • 资助金额:
    $ 23.63万
  • 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
  • 批准号:
    10096397
  • 财政年份:
    2021
  • 资助金额:
    $ 23.63万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 23.63万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 23.63万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 23.63万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 23.63万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 23.63万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 23.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了