Magnetic nanocomplexes-induced immunomodulation for fracture healing

磁性纳米复合物诱导的免疫调节促进骨折愈合

基本信息

项目摘要

Non-healing fractures are a cause of severe disability and have devastating effects on the quality of life. Currently, there are no reliable first-line therapies that stimulate healthy bone formation and prevent nonunion. There is a growing body of evidence supporting the indispensable role of macrophages in fracture healing. Also, macrophage dysfunction is a critical component in the pathogenesis of non-healing or poorly healing fractures. Immunomodulatory strategies that apply biochemical factors are gaining traction to regulate macrophage phenotypes. However, they have limited success due to complications with specificity, efficacy, and systemic toxicity. Here we propose to develop a magnetic iron-oxide nanocomplexes (MNC)-based therapy for promoting fracture healing. The cytoskeletal dynamics of macrophages are intricately linked to their inflammatory response. Our studies confirmed that the cytoskeletal dynamics of macrophages are determined by their phenotype. Studies also show that mere manipulation of cytoskeletal dynamics using physical cues, without any exogenous factors, is shown to transform macrophage phenotype. This phenotype modulation is due to the nuclear translocation of the transcription factor MRTF-A, and changes in chromatin compaction caused by cytoplasmic-to-nuclear redistribution of histone deacetylase-3 (HDAC3). We hypothesize that intracellular magnetic force can elicit transcriptional control of macrophage phenotype and promote fracture healing via MRTF-A release and HDAC3 redistribution. In SA1, we will engineer magnetic nanocomplexes for targeted internalization and mechanistically elucidate intracellular force-induced modulation of the cytoskeleton and corresponding change in macrophage phenotype. In SA2, we will validate macrophage targeting of MNC and elucidate their therapeutic potential in a murine critical-sized femoral defect. The proposed research will be a paradigm shift in wound healing and will also provide crucial insights into the mechanobiology of macrophages that are valuable for diagnostic and therapeutic interventions.
不愈合的骨折是导致严重残疾的原因,并对生活质量产生破坏性影响。 目前,还没有可靠的一线治疗方法来刺激健康的骨形成和预防骨不连。 越来越多的证据支持巨噬细胞在骨折愈合中不可或缺的作用。 此外,巨噬细胞功能障碍是不愈合或愈合不良的发病机制中的关键组成部分 骨折应用生化因子的免疫调节策略正在获得牵引力,以调节 巨噬细胞表型然而,由于其特异性、有效性、 和全身毒性。 在这里,我们建议开发一种基于磁性氧化铁纳米复合物(MNC)的治疗方法, 骨折愈合巨噬细胞的细胞骨架动力学与它们的炎症反应密切相关。 反应我们的研究证实,巨噬细胞的细胞骨架动力学是由它们的 表型研究还表明,仅仅利用物理线索操纵细胞骨架动力学, 任何外源性因素,显示转化巨噬细胞表型。这种表型调节是由于 转录因子MRTF-A的核转位,以及 组蛋白去乙酰化酶-3(HDAC 3)的胞质到核的再分布。我们假设细胞内 磁力可以通过介导巨噬细胞表型的转录控制并促进骨折愈合 MRTF-A发布和HDAC 3重新分发。 在SA 1中,我们将设计磁性纳米复合物,用于靶向内化和机械化 阐明细胞内力诱导的细胞骨架调节和巨噬细胞中的相应变化 表型在SA 2中,我们将验证MNC的巨噬细胞靶向作用,并阐明其治疗潜力。 小鼠临界尺寸股骨缺损。拟议的研究将是伤口愈合的范式转变, 还提供了对巨噬细胞的机械生物学的重要见解,这对诊断和 治疗干预。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramkumar Tiruvannamalai Annamalai其他文献

Ramkumar Tiruvannamalai Annamalai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramkumar Tiruvannamalai Annamalai', 18)}}的其他基金

Immunomodulatory Therapy for Bone Regeneration
骨再生的免疫调节疗法
  • 批准号:
    10368329
  • 财政年份:
    2021
  • 资助金额:
    $ 19.22万
  • 项目类别:
Immunomodulatory Therapy for Bone Regeneration
骨再生的免疫调节疗法
  • 批准号:
    10370306
  • 财政年份:
    2020
  • 资助金额:
    $ 19.22万
  • 项目类别:
Immunomodulatory Therapy for Bone Regeneration
骨再生的免疫调节疗法
  • 批准号:
    10569674
  • 财政年份:
    2020
  • 资助金额:
    $ 19.22万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了