Genomic Regulation and Translational Potential of a Novel Smooth Muscle Cell-Derived Cell Type in Atherosclerosis
动脉粥样硬化中新型平滑肌细胞衍生细胞类型的基因组调控和转化潜力
基本信息
- 批准号:10371660
- 负责人:
- 金额:$ 13.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-20 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesApoptosisApplications GrantsAreaArterial Fatty StreakAtherosclerosisAttenuatedAwardBiochemicalCardiovascular DiseasesCell Differentiation processCell LineageCell physiologyCellsComplexDataDevelopmentDisease ProgressionDisease regressionEZH2 geneEndothelial CellsEpigenetic ProcessEquilibriumFibroblastsGene ExpressionGenesGenomicsHumanImmunoprecipitationInflammasomeInflammationInflammatoryInflammatory ResponseInvestigationLeadershipLesionLinkLiver X ReceptorManuscriptsMediatingMolecularMolecular TargetMusNecrosisPathway interactionsPhasePhenotypePlayPreparationPreventionProgram DevelopmentProliferatingRXRRegulationRepressionResearchResearch PersonnelResearch TrainingRetinoic Acid ReceptorRoleSignal TransductionSmooth Muscle MyocytesTechniquesTestingThickTimeTretinoinVascular Smooth MuscleWorkadvanced diseaseantagonistatheroprotectivecareercareer developmentcell typecellular targetingdesignepigenetic regulationgene repressionhistological stainsinhibitorinsightmacrophagemonocytemouse modelnovelpromoterresponsesingle-cell RNA sequencingskillsstem cell biomarkersstem cellstransdifferentiationtranslational potentialwestern diet
项目摘要
Smooth muscle cells (SMCs) play major roles in atherosclerosis, a leading cause of cardiovascular disease
(CVD). SMCs can be beneficial or detrimental in atherosclerosis, depending on their transdifferentiation
trajectories into atheroprotective (e.g., fibroblast-like cell) or atherogenic (e.g., macrophage) cell types. My recent
work, combining an SMC-lineage tracing murine model and single-cell RNA sequencing (scRNA-seq), revealed
a novel SMC-derived cell type, “SEM” cell (termed because of co-expression of stem cell, endothelial cell, and
monocyte markers). SMC-derived SEM-like cells have also been identified by other groups. SEM cells highly
express genes related to proatherogenic functions (e.g., inflammation) and may be the precursors for other SMC-
derived cell types (e.g., fibrochondrocyte, macrophage), through which SEM cells may modulate vulnerability
and stability of atherosclerotic lesions. My proof of principle studies in mouse models showed that activation of
retinoic acid (RA) signaling inhibited SMC to SEM cell transition, reduced atherosclerotic burden, and promoted
fibrous cap stability in atherosclerosis. These findings suggest the following central hypotheses: 1) activation of
RA signaling attenuates SMC to SEM cell transition by directly suppressing expression of key SEM cell marker
genes; 2) activation of RA signaling represses proatherogenic functions (e.g., inflammation) of SEM cells during
disease progression; 3) activation of RA signaling is beneficial in established atherosclerosis and accelerates
disease regression by promoting SEM cell atheroprotective functions and differentiation trajectories while
suppressing atheroprone features of SEM cells. These hypotheses will be addressed through the following aims:
Aim 1 (K99 phase) will determine if RA signaling inhibits the SMC to SEM cell transition via RAR/RXR/EZH2-
mediated repression of SEM cell marker genes; Aim 2 (K99 phase) will determine if RA signaling attenuates
SEM cell inflammation during atherosclerosis progression through LXR-mediated repression of inflammatory
genes; Aim 3 (R00 phase) will apply SMC-lineage tracing and atherosclerosis regression mouse models to
determine if RA signaling drives differentiation trajectories of SEM cells towards atheroprotective rather than
atherogenic cell types in advanced atherosclerosis (Aim 3A) and promotes SEM cell apoptosis and subsequent
resorption via macrophage efferocytosis during disease regression (Aim 3B). The proposed studies will be
accomplished in the setting of a comprehensive career development program designed to provide the candidate
with scientific and leadership skills that facilitate the successful transition to an independent investigator in the
field of atherosclerotic CVD. At the K99 phase, the candidate will continue to obtain expertise in molecular,
cellular, and biochemical techniques as well as SMC-lineage tracing and mechanistic and functional investigation
of RA signaling and SEM cells in atherosclerosis mouse models for progressing, advanced, and regressing
lesions. The expert advisory team will guide the candidate in research training, manuscript and grant proposal
preparation, and ultimately in the transition to an independence career over the course of the award period.
血管平滑肌细胞(SMC)在动脉粥样硬化中起主要作用,动脉粥样硬化是心血管疾病的主要原因
(CVD)。平滑肌细胞在动脉粥样硬化中可能是有益的,也可能是有害的,这取决于它们的转分化。
进入动脉粥样硬化保护性(如成纤维细胞样细胞)或致动脉粥样硬化(如巨噬细胞)细胞类型的轨迹。我最近的经历
结合SMC谱系追踪小鼠模型和单细胞RNA测序(scRNA-seq)的工作揭示
一种新的SMC来源的细胞类型,“SEM”细胞(因干细胞、内皮细胞和
单核细胞标志物)。SMC来源的扫描电子显微镜样细胞也被其他研究小组鉴定。扫描电子显微镜细胞高度
表达与促动脉粥样硬化功能(如炎症)相关的基因,并可能是其他SMC-
衍生细胞类型(如纤维软骨细胞、巨噬细胞),扫描电子显微镜细胞可通过这些细胞类型调节脆弱性
和动脉粥样硬化病变的稳定性。我在小鼠模型中的原理研究证明,激活
维甲酸(RA)信号转导抑制SMC向SMC的转化,减轻动脉粥样硬化负荷,促进
动脉粥样硬化中纤维帽的稳定性。这些发现提出了以下中心假设:1)激活
RA信号通过直接抑制关键的扫描电子显微镜细胞标志物的表达来减弱SMC向扫描电子显微镜细胞的转化
基因;2)RA信号的激活抑制了SEM细胞的促动脉粥样硬化功能(如炎症)
疾病进展;3)RA信号的激活在已建立的动脉粥样硬化中有益并加速
促进扫描电子显微镜细胞动脉粥样硬化保护功能和分化轨迹的疾病逆转
抑制扫描电子显微镜细胞的动脉粥样硬化特征。这些假设将通过以下目标加以解决:
AIM 1(K99期)将决定RA信号是否通过RAR/RXR/EZH2-抑制SMC向SEM细胞的转化。
介导对扫描电子显微镜细胞标记基因的抑制;Aim 2(K99期)将决定RA信号是否减弱
扫描电子显微镜观察LXR介导的炎症抑制在动脉粥样硬化进展中的细胞炎症
基因;Aim 3(R00阶段)将应用SMC谱系追踪和动脉粥样硬化回归小鼠模型
确定RA信号是否推动SEM细胞向动脉粥样硬化保护方向分化,而不是
晚期动脉粥样硬化的致动脉粥样硬化细胞类型(AIM 3A)并促进扫描电子显微镜细胞凋亡和随后的
疾病消退期间通过巨噬细胞泡出的吸收(目标3B)。拟议的研究将是
在全面职业发展计划的背景下完成,旨在为应聘者提供
具有科学和领导技能,有助于成功过渡到独立调查员
动脉粥样硬化性心血管疾病领域。在K99阶段,候选人将继续获得分子、
细胞和生化技术以及SMC谱系追踪和机制和功能研究
RA信号和扫描电子显微镜细胞在动脉粥样硬化小鼠模型进展、进展和消退中的作用
损伤。专家咨询组将指导候选人进行研究培训、稿件和拨款提案
在整个颁奖过程中,他一直在做准备工作,并最终过渡到独立的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huize Pan其他文献
Huize Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huize Pan', 18)}}的其他基金
Genomic Regulation and Translational Potential of a Novel Smooth Muscle Cell-Derived Cell Type in Atherosclerosis
动脉粥样硬化中新型平滑肌细胞衍生细胞类型的基因组调控和转化潜力
- 批准号:
10553197 - 财政年份:2022
- 资助金额:
$ 13.08万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 13.08万 - 项目类别:
Standard Grant














{{item.name}}会员




