Targeted drug delivery for the treatment of cardiovascular disease and its clinical complications
靶向给药治疗心血管疾病及其临床并发症
基本信息
- 批准号:10371510
- 负责人:
- 金额:$ 10.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgingAntioxidantsArterial Fatty StreakArteriesAtherosclerosisBiologicalBlood coagulationCardiovascular DiseasesCause of DeathCellsCessation of lifeClinicalCoagulation ProcessCoupledDangerousnessDiseaseDisease ProgressionDoseDrug Delivery SystemsDrug TargetingEncapsulatedEnzymesExhibitsFDA approvedFolic AcidFormulationGenerationsGoalsHealthHemorrhageImmuneImmunologicsIn VitroInfiltrationInflammatoryInterventionInvestigational TherapiesLeadLearningLesionLigandsMediatingMentorshipMethodsModelingNano deliveryNanotechnologyOxidative StressPenetrationPharmaceutical PreparationsPharmacologyPhasePolymersProceduresProcessProductionProgressive DiseaseProteinsRNARecruitment ActivityResearchSiteTechniquesTechnologyTestingTherapeuticThrombosisThrombusTimeTranslationsTreatment EfficacyVenous Thrombosisatherogenesisbasecardiovascular disorder therapyclinical translationdelivery vehiclefolate-binding proteinimprovedin vivoinnovationmacrophagemonocytemouse modelnanoencapsulatednanoparticlenanoparticle deliveryneutrophilnew technologynext generationnoveloverexpressionpreventreceptor internalizationtargeted deliveryvascular injury
项目摘要
Cardiovascular disease is the leading cause of death world-wide. Two main reasons for this are atherosclerosis,
which narrows major arteries, and thrombosis, which results in occlusive blood clots. Despite the ongoing health
burden, the translation of experimental therapies has stalled. A common challenge for therapies addressing
atherosclerosis and thrombosis is their poor localization in sites of disease such as atherosclerotic plaque and
thrombi. Thus, there is a pressing clinical need to develop novel targeting strategies to improve therapeutic
accumulation in these sites. I hypothesize that cell-mediated delivery of nanoparticle-encapsulated therapies will
improve site-specific therapeutic accumulation to treat atherosclerosis and thrombosis. To test this, I will employ
next-generation nanoparticle synthesis technologies (Flash NanoPrecipitation (FNP) and inverse FNP) coupled
with cell-mediated delivery for the directed delivery of therapies to atherosclerotic plaque and thrombi. FNP and
iFNP are new polymeric nanoparticle synthesis technologies that uniquely address challenges related to
scalability for manufacturing. To direct these nanoparticles to sites of vascular injury, I will employ cell-mediated
delivery. In this method, nanoparticles can be either loaded into cells ex vivo or decorated with ligands to exploit
interactions with internalization receptors specifically expressed on pertinent cells in vivo. Atherosclerosis and
venous thrombosis are two disease settings characterized by immunological cell infiltration; as such, they are
uniquely suited for the application of cell-mediated delivery of nano-encapsulated therapies. With respect to
atherosclerosis, circulating activated monocytes infiltrate into the inflamed arterial wall and differentiate into
macrophages, which are centrally important to atherogenesis. Notably, these cells over-express an
internalization receptor for folic acid: folate receptor-beta. Herein, I will develop therapeutic-carrying
nanoparticles conjugated to folic acid, with the goal of being specifically internalized by activated
monocytes/macrophages thereby employing these immune cells as delivery vehicles for the localization of drug
to atherosclerotic plaque. As oxidative stress is a key driver of atherosclerotic progression, I will focus on
delivering antioxidant interventions. An equally innovative strategy using exogenous neutrophils can be used to
treat thrombosis. A key challenge in our treatment of thrombosis is a time-dependent decrease in treatment
efficacy, as aging thrombi become increasingly difficult for clot-dissolving (thrombolytic) enzymes to penetrate.
Moreover, high doses of thrombolytic enzymes can lead to dangerous bleeding. I propose to address this
penetration issue by utilizing neutrophils as cell carriers of thrombolytic proteins encapsulated in polymeric
nanoparticles. Neutrophils actively infiltrate thrombi, and can be rapidly loaded ex vivo with polymeric
nanoparticles. Employing neutrophils as a delivery vehicle would address the issue of clot penetration and could
circumvent the problem of bleeding. Overall, my project aims to develop novel cell-mediated therapeutic delivery
platforms with the goal of preventing atherosclerotic plaque progression and treatment of thrombosis.
心血管疾病是全球死亡的主要原因。造成这种情况的两个主要原因是动脉粥样硬化,
这会狭窄的主要动脉和血栓形成,从而导致闭塞性血凝块。尽管健康状况持续
负担,实验疗法的翻译停滞了。解决治疗的共同挑战
动脉粥样硬化和血栓形成是他们在疾病部位(例如动脉粥样硬化斑块和
血栓。因此,有迫切需要开发新的靶向策略来改善治疗性的临床需求
在这些站点中积累。我假设细胞介导的纳米颗粒封装疗法的递送将
改善现场特异性的治疗积累,以治疗动脉粥样硬化和血栓形成。为了测试这一点,我将雇用
下一代纳米颗粒合成技术(闪光纳米沉淀(FNP)和逆FNP)耦合
通过细胞介导的递送,将治疗疗法转移到动脉粥样硬化斑块和血栓上。 FNP和
IFNP是新的聚合物纳米颗粒合成技术,它独特地应对与
制造的可扩展性。要将这些纳米颗粒引导到血管损伤部位,我将采用细胞介导的
送货。在这种方法中,纳米颗粒可以被装入细胞,或用配体装饰以利用
与体内相关细胞上特异性表达的内在化受体的相互作用。动脉粥样硬化和
静脉血栓形成是两个以免疫细胞浸润为特征的疾病环境。因此,他们是
独特的适合应用细胞介导的纳米封装疗法的递送。关于
动脉粥样硬化,循环激活的单核细胞浸润到发炎的动脉壁,并分化为
巨噬细胞对动脉粥样硬化非常重要。值得注意的是,这些细胞过表达
叶酸的内在化受体:叶酸受体β。在这里,我将开发治疗性携带
纳米颗粒与叶酸结合,目的是被激活
单核细胞/巨噬细胞,因此使用这些免疫细胞作为药物定位的输送车辆
到动脉粥样硬化斑块。由于氧化应激是动脉粥样硬化进展的关键驱动力,我将重点放在
提供抗氧化剂干预措施。使用外源性嗜中性粒细胞的同样创新的策略可用于
治疗血栓形成。我们治疗血栓形成的关键挑战是治疗的时间依赖
功效,随着衰老血栓的衰老变得越来越困难,凝块溶解(溶栓)酶无法穿透。
此外,高剂量的溶栓酶会导致危险的出血。我建议解决这个问题
通过利用嗜中性粒细胞作为封装在聚合物中的溶栓蛋白的细胞载体来穿透问题
纳米颗粒。嗜中性粒细胞主动浸润血栓,可以在体内快速加载聚合物
纳米颗粒。使用中性粒细胞作为送货工具将解决凝块穿透的问题,可以
避免出血问题。总体而言,我的项目旨在开发新颖的细胞介导的治疗性交付
平台的目的是防止动脉粥样硬化斑块的进展和血栓形成治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie Maiocchi其他文献
Sophie Maiocchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie Maiocchi', 18)}}的其他基金
Targeted drug delivery for the treatment of cardiovascular disease and its clinical complications
靶向给药治疗心血管疾病及其临床并发症
- 批准号:
10545093 - 财政年份:2022
- 资助金额:
$ 10.26万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 10.26万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 10.26万 - 项目类别:
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:
10861960 - 财政年份:2023
- 资助金额:
$ 10.26万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 10.26万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 10.26万 - 项目类别: