Metabolic Regulation of Myofibroblast Differentiation
肌成纤维细胞分化的代谢调节
基本信息
- 批准号:10372121
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-phosphoglycerateAffectAllelesAmino AcidsBiologyCarbonCellsCharacteristicsCicatrixCollagenDNA MethylationDevelopmentDiseaseEnzymesEpigenetic ProcessExtracellular MatrixFRAP1 geneFibroblastsFibrosisGeneticGenetic TranscriptionGlucoseGlycineGlycolysisGoalsHomeostasisHumanImpairmentIn VitroKnock-inLinkLoxP-flanked alleleLungMediatingMetabolicMetabolic PathwayMetabolismMethionineMethylationModelingMusMyofibroblastPathogenesisPathway interactionsPersonsPhenotypePlayProductionProtein BiosynthesisProteinsPulmonary FibrosisRaptorsReactionRegulationRibosomal Protein S6 KinaseRoleS-AdenosylhomocysteineS-AdenosylmethionineSerineSignal TransductionTestingTherapeuticTransforming Growth FactorsUnited StatesUp-Regulationactivating transcription factoractivating transcription factor 4amino acid metabolismcytokineenzyme pathwayepigenomeepigenomicsexperimental studyfibrogenesisidiopathic pulmonary fibrosisin vivoindium-bleomycinknock-downmTOR Signaling Pathwaymetabolic abnormality assessmentnoveloverexpressionpulmonary functiontherapeutic targettreatment strategy
项目摘要
Idiopathic Pulmonary Fibrosis (IPF) is a fatal disease which has a median survival of 3.5 years and affects
approximately 89,000 people in the United States. There is no known genetic cause of IPF, and thus
identification of new mechanisms required for disease pathogenesis is of critical importance for the
development of novel treatment strategies. A defining feature of IPF is the differentiation of lung fibroblasts into
myofibroblasts, which secrete excessive amounts of extracellular matrix (collagen) and are the primary cell
responsible for the structural remodeling and impairment of lung function characteristic of IPF. We have
recently discovered that myofibroblasts depend on metabolic reprogramming characterized by increased levels
of glycolysis and metabolite flux through the de novo serine, glycine, one-carbon (SGOC) pathway to promote
glycine production for collagen protein synthesis. Glycine constitutes one third of all amino acids in collagen
protein and de novo synthesis of glycine from glucose is required to support collagen protein synthesis by
myofibroblasts. However, the signaling and transcriptional regulators of this metabolic reprogramming in
fibroblasts are unknown. The central goal of this proposal is to identify the regulators of metabolic
reprogramming in myofibroblasts and to determine their role in lung fibrosis. The premise underlying this goal
is that elucidating the mechanisms of metabolic regulation in myofibroblasts will unveil new strategies to fulfill
the sorely unmet therapeutic need in IPF. Our preliminary results show that TGF-β (Transforming Growth
Factor-β, the key cytokine involved in fibrosis), promotes signaling through the mTOR pathway, which
activates ATF4 (activating transcription factor 4). ATF4 is required for the expression of SGOC pathway
enzymes in myofibroblasts. We further show that SGOC pathway activation not only promotes collagen protein
production by myofibroblasts, but alters the epigenome of these cells, possibly providing additional ways to
target myofibroblast biology for therapeutic purposes. In the current proposal, we aim to determine the
regulators of myofibroblast metabolism and determine the mechanisms by which altered metabolism
contributes to the myofibroblastic phenotype. In Specific Aim 1 we will determine how the transcription factor
ATF4 regulates the SGOC and other metabolic pathways in lung fibroblasts in vitro and in vivo. In Specific Aim
2, we will determine how the mTOR signaling pathway regulates ATF4 and other transcriptional regulators of
cellular metabolism in lung fibroblasts in vitro and in vivo. In Specific Aim 3, we will determine how SGOC
pathway activation contributes to epigenetic changes in lung fibroblasts in vitro and in vivo. Our proposed
experiments will identify and fully characterize multiple targetable pathways required for fibrogenesis.
特发性肺纤维化(IPF)是一种致命的疾病,中位生存期为3.5年,并影响
在美国大约有89,000人。目前尚不清楚IPF的遗传原因,因此
识别疾病发病机制所需的新机制对于
开发新的治疗策略。IPF的一个明显特征是肺成纤维细胞分化为
肌成纤维细胞,分泌过量的细胞外基质(胶原),是主要细胞
对IPF的结构重塑和肺功能损害负责。我们有
最近发现,肌成纤维细胞依赖于以水平升高为特征的代谢重新编程
糖酵解和代谢产物流量通过从头开始的丝氨酸,甘氨酸,一碳(SGOC)途径促进
生产甘氨酸,用于合成胶原蛋白。甘氨酸占胶原蛋白中所有氨基酸的三分之一
从葡萄糖合成甘氨酸需要蛋白质和从头合成来支持胶原蛋白的合成
肌成纤维细胞。然而,这种代谢重新编程的信号和转录调节因子
成纤维细胞是未知的。这项提案的中心目标是确定新陈代谢的调节因素
肌成纤维细胞的重编程,并确定它们在肺纤维化中的作用。这一目标的前提是
阐明肌成纤维细胞代谢调节的机制将揭开实现
IPF中严重未得到满足的治疗需求。我们的初步结果表明,转化生长因子-β(转化生长
因子-β,参与纤维化的关键细胞因子),通过mTOR途径促进信号传递,这是
激活ATF4(激活转录因子4)。SGOC途径的表达需要ATF4
肌成纤维细胞中的酶。我们进一步表明,SGOC途径的激活不仅促进胶原蛋白
由肌成纤维细胞产生,但改变了这些细胞的表观基因组,可能提供了额外的途径
靶向肌成纤维细胞生物学用于治疗目的。在目前的提案中,我们的目标是确定
肌成纤维细胞代谢的调节剂,并确定改变代谢的机制
有助于肌成纤维细胞的表型。在特定的目标1中,我们将确定转录因子如何
ATF4在体外和体内调节肺成纤维细胞的SGOC等代谢途径。以特定的目标
2,我们将确定mTOR信号通路如何调节ATF4和其他转录调节因子
肺成纤维细胞在体内外的细胞代谢。在具体目标3中,我们将确定国家奥委会如何
体内和体外肺成纤维细胞的表观遗传学改变与通路激活有关。我们的建议
实验将确定和充分描述纤维化形成所需的多个靶向通路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Brian Hamanaka其他文献
Robert Brian Hamanaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Brian Hamanaka', 18)}}的其他基金
Metabolic Regulation of Myofibroblast Differentiation
肌成纤维细胞分化的代谢调节
- 批准号:
10586076 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 40.5万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists