Dissecting the roles of timing in a canonical neural computation
剖析时序在规范神经计算中的作用
基本信息
- 批准号:10205535
- 负责人:
- 金额:$ 120.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAnimal BehaviorAnimal ModelAnimalsBehaviorBlindnessBrainCalciumCellsDetectionDevicesDiseaseDrosophila genusEyeFeedbackGene ExpressionGeneticGoalsIndividualInsectaIon ChannelLearningLightLocationMammalsMapsMeasuresMembraneModelingMotionMotion PerceptionNeuronsNeurotransmittersOpticsOrganismPartner in relationshipPhysiologyPublic HealthResearchRetinaRoleSensorySignal TransductionSmell PerceptionSpeedStructureSystemTestingTextTimeVisionVisualVisual MotionVisual impairmentVisual system structureWorkbehavior measurementbehavioral responsecell typeexperimental studyflygenetic manipulationimprovedin vivo calcium imagingin vivo two-photon imagingindividual responseneural circuitneuroregulationneurotransmissionneurotransmitter releasereceptive fieldrelating to nervous systemresponseretinal prosthesisscaffoldsensory inputsignal processingtoolvisual informationvisual processingvoltage
项目摘要
Project Summary [30 lines max]
Timing is critical to neural processing. Nowhere is that clearer than in visual motion detection. To detect
motion, neurons transmit visual information with different latencies, or delays, allowing the circuit to compare
visual scenes over time. When comparisons over time are combined with comparisons over space, the circuit
can compute direction-selective signals, which are larger for motion in one direction than in the opposite
direction. These signals in turn guide a wide range of behaviors, from navigation and predator avoidance to
mating. This project proposes to investigate the origins and effects of timing differences in visual motion
circuits in the fruit fly Drosophila, a model organism in which powerful genetic tools can identify the roles of
individual neurons in computations. Using these tools, this research will identify mechanisms that underlie the
different dynamical responses of visual neurons and map out how those responses control downstream
computations. This work is significant for two reasons. First, motion detection is a canonical neural
computation, since it requires circuits to integrate visual information over both time and space, and because it
is necessarily nonlinear. Moreover, the anatomy, physiology, and computational structure of motion detection
has strong parallels between flies and mammalian retina and cortex. Therefore, it is likely that what we learn
about the mechanisms that regulate timing the fly eye and their effects on motion computation will be mirrored
in other circuits that detect visual motion. Second, our proposed aims will test fundamental models of motion
detection. All of these models rely on timing differences that permit comparisons to be made over time, but
these assumptions have not been tested. Our research will distinguish between proposed models in the fly and
test fundamental assumptions about how motion is computed by differences in the timing of neural signals. In
our complementary aims, we will uncover mechanisms that generate different timing in different neural
responses. We will also measure the effects of timing differences on motion signals and on behavior. On
completion, these studies will advance our understanding of how neural response timing is regulated and how
that timing determines downstream neural computations. We expect that what we learn in this small neural
circuit can serve as a scaffold for understanding the roles of timing in motion detection in the larger brains of
mammals.
项目摘要[最多30行]
时间是神经处理的关键。没有什么比视觉运动检测更清楚的了。要检测
运动,神经元以不同的潜伏期或延迟传递视觉信息,允许电路比较
随着时间的推移,视觉场景。当将时间上的比较与空间上的比较结合在一起时,电路
我可以计算方向选择信号,它在一个方向上的运动比在相反方向上的运动大
方向。这些信号反过来指导着一系列的行为,从导航和躲避捕食者到
交配。该项目旨在研究视觉运动中时间差异的起源和影响
果蝇中的回路,果蝇是一种模式生物,强大的遗传工具可以在其中识别
计算中的单个神经元。使用这些工具,这项研究将确定
视觉神经元的不同动态反应,并绘制出这些反应如何控制下游
计算。这项工作之所以意义重大,有两个原因。首先,运动检测是一种规范的神经
计算,因为它需要电路来整合时间和空间上的视觉信息,而且因为它
必然是非线性的。此外,运动检测的解剖学、生理学和计算结构
在苍蝇和哺乳动物的视网膜和皮质之间有很强的相似性。因此,很可能我们所学到的
关于调节时间的机制,苍蝇眼及其对运动计算的影响将被反映出来
在检测视觉运动的其他电路中。其次,我们提出的目标将测试基本的运动模式。
侦测。所有这些模型都依赖于时间差,允许随着时间的推移进行比较,但
这些假设尚未得到检验。我们的研究将区分拟议的飞行模型和
测试关于如何通过神经信号的时序差异来计算运动的基本假设。在……里面
我们的目标互补,我们将揭示在不同神经中产生不同时序的机制
回应。我们还将测量时序差异对运动信号和行为的影响。在……上面
完成后,这些研究将促进我们对神经反应时间是如何调节的以及如何
这一时机决定了下游的神经计算。我们希望我们在这个小神经中学到的东西
电路可以作为一个脚手架,用来理解计时在运动检测中的作用
哺乳动物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damon Alistair Clark其他文献
Damon Alistair Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damon Alistair Clark', 18)}}的其他基金
Characterizing odor motion detection in flies
描述苍蝇气味运动检测的特征
- 批准号:
10717167 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10388229 - 财政年份:2016
- 资助金额:
$ 120.62万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10604346 - 财政年份:2016
- 资助金额:
$ 120.62万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10205524 - 财政年份:2016
- 资助金额:
$ 120.62万 - 项目类别:
Algorithm and neural basis of a fundamental visual motion computation
基本视觉运动计算的算法和神经基础
- 批准号:
9910413 - 财政年份:2016
- 资助金额:
$ 120.62万 - 项目类别:
Algorithm and neural basis of a fundamental visual motion computation
基本视觉运动计算的算法和神经基础
- 批准号:
9079038 - 财政年份:2016
- 资助金额:
$ 120.62万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 120.62万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 120.62万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 120.62万 - 项目类别:
Research Grant