Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
基本信息
- 批准号:10206058
- 负责人:
- 金额:$ 43.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgreementBiomedical EngineeringBreastBreast Cancer PatientCancer cell lineCarcinoma in SituCause of DeathCell LineCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCoupledDataDevelopmentDiagnosisDrug ScreeningE-CadherinEngineeringEpidermal Growth Factor ReceptorExperimental ModelsFibronectinsGene Expression ProfileGenesGeneticHeterogeneityHypoxiaImageImage AnalysisIn VitroIndividualKnock-inKnowledgeLabelLeadLeftLinkMaintenanceMalignant - descriptorMalignant NeoplasmsMammographyMatrix MetalloproteinasesMetabolic stressMetastatic breast cancerModelingNeoplasm MetastasisNoninfiltrating Intraductal CarcinomaOrganoidsOutcomeParentsPathway interactionsPatientsPeripheralPhenotypePleural effusion disorderPrognostic MarkerProteinsRegulator GenesReproducibilityResolutionRiskSamplingSignal PathwaySignal TransductionSiteSpatial DistributionStimulusStressStromal NeoplasmSystemTestingTherapeuticTimeVimentinWomanWorkautomated image analysisbasebreast cancer progressioncell motilityclinically relevantconfocal imagingdeep learningdeep learning algorithmdesigneffective therapygenetic signaturegenomic profilesimaging approachimprovedin vitro Modelin vivoinfiltrating duct carcinomainnovationmalignant breast neoplasmmigrationneoplastic cellnew therapeutic targetnovelovertreatmentparacrinepremalignantpreventtherapy developmenttreatment strategytumortumor heterogeneitytumor hypoxiatumor progression
项目摘要
Approximately 20% of breast cancers detected through mammography are pre-invasive Ductal Carcinoma in
situ (DCIS). If left untreated, approximately 20-50% of DCIS will progress to more deadly Invasive Ductal
Carcinoma (IDC). No prognostic biomarkers can reliably predict the risk of progression from DCIS to IDC. Similar
genomic profiles of matched pre-invasive DCIS and IDC suggests that the progression is not driven by genetic
aberrations in DCIS cells, but microenvironmental factors, such as hypoxia and metabolic stress prevalent in
DCIS, may drive the transition. We need innovative models to investigate how to halt steps of DCIS progression
to invasive phenotypes and subsequent metastasis from the primary site. This proposal directly addresses
this unmet need by developing a novel three-dimensional in vitro organoid model that recapitulates key
hallmarks of DCIS to IDC progression: tumor-size induced hypoxia and metabolic stress, tumor heterogeneity
and spontaneous emergence of migratory phenotype in the same parent cells without any additional stimulus. A
tangible advantage of the proposed organoid models is the ability to precisely and reproducibly study how the
hypoxic microenvironment induces tumor migration in real time and in isolation from non-tumor cells present in
vivo, providing unique opportunity to define tumor-intrinsic mechanisms of DCIS to IDC progression. Our
preliminary observations lead to central hypothesis that tumor size-induced hypoxia establishes a “hypoxic
secretome”, which initiates the migratory phenotype; the hypoxic secretome then cooperate with intracellular
signaling networks to independently maintain cell migration. We propose three independent but inter-related
aims to link hypoxic secretome with the initiation, maintenance and spatial distribution of migratory phenotypes.
Aim 1 will engineer size-controlled DCIS organoids (150-600 µm) with controlled hypoxic microenvironments to
identify and examine how hypoxic secretome initiates migratory phenotype. We will combine experimental
organoid models with time-lapse imaging and computational approaches to study organoid migration. Aim 2 will
demonstrate that migratory cells can re-establish the secretome and maintain migratory phenotype independent
of hypoxia. We will reconstruct an intracellular signaling network activated by the hypoxic secretome using
microarray data. We will verify these gene expression signatures in sorted migratory and non-migratory cells,
and validate them using secretome inhibition studies. Aim 3 will investigate, for the first time, the spatial
distribution and origin of the migratory phenotype. We will use CRISPR-based gene knock-in (FP-labeling),
automated image analyses, and a deep-learning algorithm to track and visualize the emergence of migratory
phenotypes from the hypoxic core outward to the periphery or from the migratory front.
The successful development of this 3D organoid model and completion of the proposed work will provide
answers to two fundamental questions in the progression of invasive breast cancer: 1) What causes some DCIS
cells to become migratory and develop into invasive tumors? 2) How and where does the migratory phenotype
(IDC) emerge? The mechanistic understanding gained from these studies will improve diagnosis, lead to the
development of treatment strategies to arrest invasion at the pre-malignant stage, and thus prevent patient
overtreatment. It is straightforward to generalize our system to other tumor types, development of tumor/stromal
co-culture, and drug screening.
在通过乳房X光检查发现的乳腺癌中,大约20%是浸润性导管癌前期癌。
SITE(DCIS)。如果不治疗,大约20%-50%的DCIS将进展为更致命的侵袭性导管
癌症(IDC)。没有预测预后的生物标记物可以可靠地预测从DCIS到IDC的进展风险。类似
匹配的侵袭前DCIS和IDC的基因组图谱表明,进展不是由基因驱动的
DCIS细胞中存在异常,但微环境因素,如低氧和代谢应激,在
DCIS可能会推动这一转变。我们需要创新的模型来研究如何阻止DCIS进展的步伐
与侵袭性表型和随后的原发部位转移有关。这项提案直接针对
通过开发一种新的三维体外有机模型来满足这一尚未满足的需求
DCIS对IDC进展的特征:肿瘤大小引起的缺氧和代谢应激,肿瘤的异质性
在没有任何额外刺激的情况下,在同一亲本细胞中自发出现迁移表型。一个
所提出的有机物模型的实际优势是能够精确和可重复性地研究
低氧微环境实时诱导肿瘤迁移,并与非肿瘤细胞隔离存在
体内,提供了独特的机会,以确定肿瘤的内在机制的DCIS的IDC进展。我们的
初步观察导致了一个中心假设,即肿瘤大小引起的低氧建立了一种
分泌体“,启动迁移表型;然后低氧分泌体与细胞内协同
独立维持细胞迁移的信令网络。我们提出了三个独立但又相互关联的
旨在将低氧分泌组与迁徙表型的启动、维持和空间分布联系起来。
AIM 1将设计尺寸受控的DCIS有机化合物(150-600微米)和受控的低氧微环境,以
鉴定和研究低氧分泌体如何启动迁移表型。我们将结合实验
用时间推移成像和计算方法研究有机物迁移的有机物模型。目标2将
证明迁移细胞可以重建分泌体并保持迁移表型独立
缺氧的症状。我们将重建一个由低氧分泌组激活的细胞内信号网络
微阵列数据。我们将在分类的迁移和非迁移细胞中验证这些基因表达特征,
并使用分泌体抑制研究来验证它们。目标3将首次调查空间
迁徙表型的分布和起源。我们将使用基于CRISPR的基因敲入(FP标记),
自动图像分析和深度学习算法,可跟踪和可视化迁徙的出现
表型从低氧核心向外向外或从迁徙前沿。
这一3D有机模型的成功开发和拟议工作的完成将提供
浸润性乳腺癌进展过程中两个基本问题的答案:1)是什么导致了某些DCIS
细胞会发生迁移并发展为侵袭性肿瘤?2)迁移表型是如何发生以及在哪里发生的?
(IDC)涌现?从这些研究中获得的机械性理解将改善诊断,导致
制定治疗策略,在癌前阶段阻止侵袭,从而防止患者
过度治疗。很容易将我们的系统推广到其他肿瘤类型、肿瘤/间质的发展
共培养和药物筛选。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shilpa Sant其他文献
Shilpa Sant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shilpa Sant', 18)}}的其他基金
Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
- 批准号:
10581806 - 财政年份:2023
- 资助金额:
$ 43.4万 - 项目类别:
Three-dimensional organoid models to study breast cancer progression
研究乳腺癌进展的三维类器官模型
- 批准号:
10438709 - 财政年份:2018
- 资助金额:
$ 43.4万 - 项目类别:
Engineered Microenvironments to model effect of size in tumor progression
工程微环境模拟肿瘤进展中大小的影响
- 批准号:
8680848 - 财政年份:2014
- 资助金额:
$ 43.4万 - 项目类别:
Engineered Microenvironments to model effect of size in tumor progression
工程微环境模拟肿瘤进展中大小的影响
- 批准号:
8829249 - 财政年份:2014
- 资助金额:
$ 43.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.4万 - 项目类别:
Research Grant














{{item.name}}会员




