Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning
习惯形成中的纹状体可塑性作为解构适应性学习的平台
基本信息
- 批准号:10207803
- 负责人:
- 金额:$ 99.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdaptive BehaviorsAnimalsAttentionAutomobile DrivingAxonBehaviorBehavioralBiological ModelsBrainCalciumCellsCommutingCompetenceComplementComplexComputer ModelsCorpus striatum structureCre driverDisciplineDiseaseDopamineDorsalDystoniaElectrophysiology (science)ElementsEtiologyEventExcitatory SynapseExhibitsFire - disastersFoundationsFunctional disorderGenerationsGeneticGilles de la Tourette syndromeGoalsHabitsHandwashingHuntington DiseaseImageInstructionInterneuronsKnowledgeLearningLinkMapsMeasurementMeasuresMedialMediatingMethodsModelingMolecular GeneticsMonitorMotorMovementMusNeuronsObsessive-Compulsive DisorderOutputParkinson DiseasePathway interactionsPharmaceutical PreparationsPharmacogeneticsPlayPopulationPositioning AttributePreparationProcessProductionReagentReporterResourcesRoleSeriesSignal TransductionSiteSliceSpecific qualifier valueSubstance abuse problemSynapsesSynaptic ReceptorsSynaptic plasticityTestingThalamic structureTimeUrsidae FamilyWeightWorkYinadaptive learningaddictionautism spectrum disordercell typecohesioncompulsiondensitydesignexperienceexperimental studyhabit learningin vivointerestlearned behaviormotor skill learningmultidisciplinarynerve supplynervous system disordernetwork modelsneuropsychiatric disorderneuropsychiatric symptomnovelnovel therapeutic interventionpostsynapticpredictive modelingpresynapticrelating to nervous systemresponsestriosomesuccesssymptomatologytargeted treatmenttherapeutic targettherapy developmenttool
项目摘要
ABSTRACT
A distinguishing feature of the brain is that its circuitry isn’t computationally static, it adapts to
experience. Understanding the circuit mechanisms for adaptive behavior carries two-fold potential benefits -
revealing the brain’s learning rules and identifying key behaviorally significant functional “nodes”. These nodes
suggest potent sites to target for therapy development and may also be instructive to suggest more basic
circuit principles underlying behavior.
Using striatal circuitry and habit learning as a model system, we recently uncovered a set of paradigm-
challenging findings in a striatum-dependent habit learning task. In particular, we discovered a new circuit-level
signature, termed dviLP (direct vs indirect Latency Plasticity), which distinguishes striatal slices prepared from
habitual vs goal-directed animals. The features of dviLP shift long-held attention on rate differences between
the two principle projection neuron types, those to the direct and indirect pathways, to consider that
behaviorally adaptive signals may be generated by plasticity of their relative timing to fire. Moreover, the origin
of this plasticity appears to involve striatal fast-spiking interneurons, a highly non-canonical site for the
expression of long-lasting plasticity. Beginning with this highly novel foundation, here we propose to generate a
robust predictive computational model for striatal-dependent learning mechanisms by joining multiple
disciplines and multiple levels of analysis through an iterative process of circuit modeling and experimentation.
In Aim 1, we will comprehensively map functional changes in synaptic and cellular activity that define the
behavioral transition from goal-directed to habitual in an operant lever press task. We will use a layered suite of
molecular genetic tools to assign coordinates that specify inputs, outputs, compartments (striosome/matrix)
and regions (medial, dorsal). In Aim 2, we will measure the activity of genetically specified components of the
striatum in behaving mice, identifying the dynamic changes that correlate with and cause the shift from goal-
directed to habitual behavior. Our team offers multidisciplinary strengths. Dr. Calakos and Yin have expertise in
habit behavior, plasticity mechanisms and in vivo circuit dynamics; ideal for spearheading this effort. The
success and impact of this effort will be amplified by tightly incorporating Dr. Brunel’s expertise in
computationally modeling brain learning mechanisms and Dr. Tadross’s novel pharmacogenetic reagents that
are ideally positioned to test causality of synaptic plasticity events, offering the unique opportunity to
manipulate a specific synaptic receptor in a genetically defined cell type. Ultimately, we expect that the
knowledge gained through this highly collaborative proposal will provide a foundational resource to accelerate
understanding of striatal learning rules for adaptive behavior.
摘要
大脑的一个显着特征是,它的电路在计算上不是静态的,它会适应
体验.了解适应行为的电路机制有两个潜在的好处-
揭示大脑的学习规则,并识别关键的行为重要功能“节点”。这些节点
提示了治疗开发靶向有效位点,也可能有益于提示更基本的
行为背后的电路原理
使用纹状体回路和习惯学习作为模型系统,我们最近发现了一组范式-
在纹状体依赖性习惯学习任务中具有挑战性的发现。特别是,我们发现了一个新的电路级
签名,称为dviLP(直接与间接潜伏期可塑性),区分纹状体切片制备,
习惯性动物vs目标导向动物dviLP的特点转移了人们对以下方面的利率差异的长期关注:
两种主要的投射神经元类型,即直接和间接通路,考虑到
行为自适应信号可以通过其相对定时的可塑性来产生。此外,起源
这种可塑性似乎涉及纹状体快速尖峰中间神经元,这是一个高度非典型的网站,
表现出持久的可塑性。从这个非常新颖的基础开始,我们建议在这里生成一个
通过连接多个纹状体依赖性学习机制的鲁棒预测计算模型
通过电路建模和实验的迭代过程,实现多学科和多层次的分析。
在目标1中,我们将全面绘制突触和细胞活动中的功能变化,这些变化定义了
在操作性压杆任务中从目标导向到习惯性的行为转变。我们将使用一套分层的
分子遗传学工具,用于分配指定输入、输出、区室(纹状体/基质)的坐标
和区域(内侧,背侧)。在目标2中,我们将测量基因特异性组分的活性。
行为小鼠的纹状体,识别与目标相关并导致目标-
针对习惯性行为。我们的团队提供多学科的优势。卡拉科斯博士和尹博士擅长
习惯行为,可塑性机制和体内电路动力学;理想的带头这项工作。的
这项工作的成功和影响将通过紧密结合布鲁内尔博士的专业知识来扩大,
计算模拟大脑学习机制和塔德罗斯博士的新型药物遗传学试剂,
理想地定位于测试突触可塑性事件的因果关系,提供了独特的机会,
操纵遗传上确定的细胞类型中的特定突触受体。最终,我们预计,
通过这一高度协作的提案获得的知识将提供基础资源,
理解纹状体学习规则的适应行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICOLE CALAKOS其他文献
NICOLE CALAKOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICOLE CALAKOS', 18)}}的其他基金
Significance of Protein Synthesis by the Integrated Stress Response in Neuromodulatory Neurons for Adaptive Behavior and Synaptic Plasticity
神经调节神经元综合应激反应蛋白质合成对适应性行为和突触可塑性的意义
- 批准号:
10718345 - 财政年份:2023
- 资助金额:
$ 99.34万 - 项目类别:
Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning
习惯形成中的纹状体可塑性作为解构适应性学习的平台
- 批准号:
10451714 - 财政年份:2018
- 资助金额:
$ 99.34万 - 项目类别:
Striatal Plasticity in Habit Formation as a Platform to Deconstruct Adaptive Learning
习惯形成中的纹状体可塑性作为解构适应性学习的平台
- 批准号:
9789068 - 财政年份:2018
- 资助金额:
$ 99.34万 - 项目类别:
Novel high-throughput screening for modifiers of TorsinA pathology
TorsinA 病理修饰因子的新型高通量筛选
- 批准号:
8517913 - 财政年份:2013
- 资助金额:
$ 99.34万 - 项目类别:
Novel high-throughput screening for modifiers of TorsinA pathology
TorsinA 病理修饰因子的新型高通量筛选
- 批准号:
8634153 - 财政年份:2013
- 资助金额:
$ 99.34万 - 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
- 批准号:
8215517 - 财政年份:2012
- 资助金额:
$ 99.34万 - 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
- 批准号:
8415843 - 财政年份:2012
- 资助金额:
$ 99.34万 - 项目类别:
Development of a Novel Model for Tourettes Syndrome
抽动秽语综合症新模型的开发
- 批准号:
8743424 - 财政年份:2012
- 资助金额:
$ 99.34万 - 项目类别:
Novel Genetic Mouse Model to Study the Consequences of TorsinA Dysfunction
研究 TorsinA 功能障碍后果的新型基因小鼠模型
- 批准号:
8114531 - 财政年份:2011
- 资助金额:
$ 99.34万 - 项目类别:
Novel Genetic Mouse Model to Study the Consequences of TorsinA Dysfunction
研究 TorsinA 功能障碍后果的新型基因小鼠模型
- 批准号:
8287547 - 财政年份:2011
- 资助金额:
$ 99.34万 - 项目类别:
相似海外基金
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 99.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neuroanatomical pathways of the mouse olfactory tubercle and odor-induced adaptive behaviors
小鼠嗅结节的神经解剖通路和气味诱导的适应性行为
- 批准号:
16K18377 - 财政年份:2016
- 资助金额:
$ 99.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Effects of the Video Self-Modeling on Adaptive Behaviors of Students with Autism Spectrum Disorders
视频自我塑造对自闭症谱系障碍学生适应性行为的影响
- 批准号:
22531069 - 财政年份:2010
- 资助金额:
$ 99.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BIC: EMT: Cooperative and Adaptive Behaviors By Molecular Robots
BIC:EMT:分子机器人的合作和适应性行为
- 批准号:
0523317 - 财政年份:2005
- 资助金额:
$ 99.34万 - 项目类别:
Continuing Grant
Adaptive behaviors emerged by functional structures in interaction networks
交互网络中功能结构出现的适应性行为
- 批准号:
17075007 - 财政年份:2005
- 资助金额:
$ 99.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
- 批准号:
3025358 - 财政年份:1986
- 资助金额:
$ 99.34万 - 项目类别:
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
- 批准号:
3025357 - 财政年份:1984
- 资助金额:
$ 99.34万 - 项目类别: