Novel deep learning strategy to translate ICD Codes to the Abbreviated Injury Scale

将 ICD 代码转换为缩写伤害量表的新颖深度学习策略

基本信息

  • 批准号:
    10378868
  • 负责人:
  • 金额:
    $ 8.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Trauma is one of the leading causes of death and disability in the US and around the world. Accurate measurement is critical to improving our understanding of this disease and gauging the effectiveness of interventions. Tracking the burden of traumatic injuries relies on not only identifying deaths, but also non-fatal injuries. The widely used International Classification of Disease (ICD) diagnosis coding system, developed by the World Health Organization. does not have a mechanism for directly measuring injury severity. In order to measure in severity, ICD codes are often converted to the Abbreviated Injury Scale (AIS). Each AIS code has a measure of relative injury severity, and multiple codes can be combined to determine the overall injury severity of an individual patients. However, the currently used methods for conversion of ICD to AIS rely on one-to-one mapping between these coding systems, which has many inherent difficulties. Specifically, these one-to-one mappings have been shown to systematically underestimate overall injury severity. Recent advances in computation linguistics have solved very similar problems with the use of embedding and deep learning. We intended to apply these techniques ICD to AIS translations. The key innovation is to consider all the information available about a patient simultaneously, rather than converting each code in isolation. This objective of this R03 proposal is to develop tools that improve the accuracy of population-level injury research that uses ICD codes. We will accomplish this objective by: (1) developing a tool to predict overall injury severity for individual patients from ICD codes, and (2) developing a tool to translate ICD codes to AIS for individual patients. Modern language translation has algorithms are based on determining the location of words in an embedded space, so words with similar meaning are near to each other and the relative locations encode relationships between words. Similarly, we will transfer ICD into an embedded space, which will be used by subsequent deep learning modules produce our results. There is data for millions of trauma patients collected in in the National Trauma Data Bank (NTDB) that contains both ICD and AIS extracted by expert coders. We will use this data to train and evaluate the deep learning models that will underlie our tools. Together, these tools will meet the critical needs to improve the quality of trauma research and increase the accuracy of injury monitoring using administrative medical databases.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ryan Hartka其他文献

Lawn mower injuries presenting to the emergency department: 2005 to 2015
  • DOI:
    10.1016/j.ajem.2018.01.031
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Harris;Jonathan Madonick;Thomas Ryan Hartka
  • 通讯作者:
    Thomas Ryan Hartka

Thomas Ryan Hartka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ryan Hartka', 18)}}的其他基金

Novel deep learning strategy to translate ICD Codes to the Abbreviated Injury Scale
将 ICD 代码转换为缩写伤害量表的新颖深度学习策略
  • 批准号:
    10532796
  • 财政年份:
    2021
  • 资助金额:
    $ 8.08万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了