Improving outcomes of periviable births via an enhanced prediction tool
通过增强的预测工具改善围产率结果
基本信息
- 批准号:10378480
- 负责人:
- 金额:$ 33.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:2 year oldAddressBehaviorBirthCaliforniaCaringCessation of lifeClinicClinicalCommunitiesCost Effectiveness AnalysisCounselingDataData AggregationData CollectionDecision MakingDelivery RoomsFamilyGestational AgeHospitalsIndividualInfantInfant CareInstitutionKnowledgeLeadLength of StayLifeLinkMethodsModelingModernizationMorbidity - disease rateMothersNational Institute of Child Health and Human DevelopmentNeonatalNeonatal Intensive Care UnitsNetwork-basedNeurodevelopmental DisabilityNeurodevelopmental ImpairmentNeurologicOutcomeOutcome StudyPalliative CarePatientsPerformancePerinatalPopulationPregnancyPremature BirthPrognosisQuality of CareRandomizedResearchResourcesResuscitationSourceSurvivorsTestingTimeTraumaUncertaintyUse EffectivenessVariantanxiousbasecare outcomesclinical careclinical decision-makingclinical practicecohortcollaborative carecostcost effectivenesscost estimatedata infrastructuredemographicsdisabilityelectronic datafallsfetalfetal diagnosisfollow-upimprovedimproved outcomeinnovationknowledge basemortalityneonateperiviablepopulation basedpredict clinical outcomepredictive modelingprognosticrespiratoryresuscitative carerisk predictionrisk prediction modeltool
项目摘要
PROJECT SUMMARY
The uncertainty surrounding expected outcomes at periviable gestation leads to several major
challenges. First, clinicians may be unsure of how to counsel families. Second, the lack of clarity makes
families more anxious and causes trauma. Third, it is difficult for both clinicians and families to make the most
informed decisions for the neonate. This is important because making a decision to resuscitate when there are
very poor chances for a good outcome could lead to a futile attempt at resuscitation leading to death, or
potentially a survivor that has severe neurodevelopmental disability. On the other hand, making a misinformed
decision to not resuscitate and proceed to comfort care when there is a good chance of survival without
disability could be even more tragic.
We will develop and test a modern, comprehensive predictive model for outcomes at periviable
gestation using an existing infrastructure for data collection and implementation, the California Perinatal Quality
Care Collaborative (CPQCC). This population-based network of neonatal intensive care units includes both
academic and community units, which means that results will be generalizable. CPQCC already has an
existing data infrastructure that includes maternal and neonatal data, including follow-up data at 2 years of age,
giving an opportunity to study outcomes that do not exist in similar networks. The setting of the CPQCC allows
for a unique opportunity to both improve on current prediction tools, and to implement and evaluate the
prediction tool in a real-world setting.
In Aim 1, we will build a predictive model for outcomes in periviable gestation using the most up-to-date
data possible using a broad population-based cohort. This model will be used to build an on-line estimator that
will be used by 20 hospitals across California. In Aim 2, we will evaluate how current practice across ~140
California neonatal intensive care units align with prognostic estimates from the models built in Aim 1. In this
Aim, we will evaluate whether certain patient level factors and hospital level factors appear to fall outside the
norms of typical practice in relationship to prognosis, for therapies provided to the mother prior to birth, and the
infant after birth. In Aim 3, we will implement usage of the estimator across California neonatal intensive care
units in waves of 20 hospitals each over a 1 ½ year period. We will then compare if and how practices change
for periviable gestation infants. In Aim 4, we will conduct a cost-effectiveness analysis of implementing this
estimator in clinical practice. This research will fill several gaps in our knowledge of the use of prediction
models for periviable birth, particularly the gap in our understanding of how using an estimator in practice may
influence and improve clinical decisions and outcomes.
项目概要
围产期预期结果的不确定性导致了几个主要问题
挑战。首先,临床医生可能不确定如何向家人提供咨询。其次,缺乏明确性使得
家庭更加焦虑并造成创伤。第三,临床医生和家属都难以获得最大利益。
为新生儿做出明智的决定。这很重要,因为在出现以下情况时做出复苏的决定:
获得良好结果的机会非常小,可能会导致徒劳的复苏尝试,从而导致死亡,或者
可能是患有严重神经发育障碍的幸存者。另一方面,制造误导
当没有复苏机会且有很大生存机会时,决定不进行复苏并继续接受安慰护理
残疾可能会更加悲惨。
我们将开发并测试一个现代的、全面的预测模型,用于预测结果
使用现有基础设施进行数据收集和实施的妊娠,加州围产期质量
护理协作(CPQCC)。这个以人口为基础的新生儿重症监护病房网络包括
学术和社区单位,这意味着结果将具有普遍性。 CPQCC 已经拥有
现有的数据基础设施,包括孕产妇和新生儿数据,包括 2 岁时的随访数据,
提供研究类似网络中不存在的结果的机会。 CPQCC 的设置允许
获得一个独特的机会来改进当前的预测工具,并实施和评估
现实世界环境中的预测工具。
在目标 1 中,我们将使用最新的方法建立一个针对围产期妊娠结局的预测模型。
使用广泛的基于人群的队列可能获得数据。该模型将用于构建一个在线估计器
将被加州 20 家医院使用。在目标 2 中,我们将评估当前的实践如何跨越约 140
加州新生儿重症监护病房与目标 1 中建立的模型的预后估计一致。
目的是,我们将评估某些患者层面因素和医院层面因素是否出现在范围之外
与预后相关的典型实践规范,为母亲在出生前提供的治疗,以及
婴儿出生后。在目标 3 中,我们将在加州新生儿重症监护室实施估算器的使用
1.5 年期间,每波 20 家医院的单位。然后我们将比较实践是否以及如何改变
对于围产儿。在目标 4 中,我们将对实施该目标进行成本效益分析
临床实践中的估计器。这项研究将填补我们在预测使用方面的知识空白
围产期模型,特别是我们对如何在实践中使用估计器可能产生的理解上的差距
影响和改善临床决策和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Chong Lee其他文献
Concordance between electronic health record-recorded race/ethnicity and parental report in hospitalized children.
电子健康记录记录的种族/民族与住院儿童家长报告之间的一致性。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Kim Hoang;Jessica M Gold;Carmin Powell;Henry Chong Lee;Baraka Floyd;Alan Schroeder;Whitney Chadwick - 通讯作者:
Whitney Chadwick
Early term-infant discharge associated with higher re-admission rates
- DOI:
10.1016/j.jpeds.2020.12.051 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Henry Chong Lee;Jeffrey B. Gould - 通讯作者:
Jeffrey B. Gould
Henry Chong Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Chong Lee', 18)}}的其他基金
Improving outcomes of periviable births via an enhanced prediction tool
通过增强的预测工具改善围产率结果
- 批准号:
10807854 - 财政年份:2023
- 资助金额:
$ 33.39万 - 项目类别:
Improving outcomes of periviable births via an enhanced prediction tool
通过增强的预测工具改善围产率结果
- 批准号:
9884296 - 财政年份:2020
- 资助金额:
$ 33.39万 - 项目类别:
In situ simulation of neonatal resuscitation to improve team performance and clinical outcomes
新生儿复苏的原位模拟可提高团队绩效和临床结果
- 批准号:
9233469 - 财政年份:2016
- 资助金额:
$ 33.39万 - 项目类别:
GO MOMS hybrid simulation model for labor and delivery care
用于分娩护理的 GO MOMS 混合仿真模型
- 批准号:
10197693 - 财政年份:2016
- 资助金额:
$ 33.39万 - 项目类别:
In situ simulation of neonatal resuscitation to improve team performance and clinical outcomes
新生儿复苏的原位模拟可提高团队绩效和临床结果
- 批准号:
10055771 - 财政年份:2016
- 资助金额:
$ 33.39万 - 项目类别:
Maternal, Clinician & Hospital Factors in Breastmilk for Premature Infants
产妇、临床医生
- 批准号:
8598488 - 财政年份:2012
- 资助金额:
$ 33.39万 - 项目类别:
Maternal, Clinician & Hospital Factors in Breastmilk for Premature Infants
产妇、临床医生
- 批准号:
8240229 - 财政年份:2012
- 资助金额:
$ 33.39万 - 项目类别:
Maternal, Clinician & Hospital Factors in Breastmilk for Premature Infants
产妇、临床医生
- 批准号:
8409789 - 财政年份:2012
- 资助金额:
$ 33.39万 - 项目类别:
Maternal, Clinician & Hospital Factors in Breastmilk for Premature Infants
产妇、临床医生
- 批准号:
8774235 - 财政年份:2012
- 资助金额:
$ 33.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Research Grant














{{item.name}}会员




