Right Ventricular Remodeling in Tetralogy of Fallot
法洛四联症的右心室重构
基本信息
- 批准号:10387064
- 负责人:
- 金额:$ 5.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdverse eventAffectAlgorithmsAnatomyBirthBloodCardiacCardiac VolumeCardiologyCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCaringChildCicatrixClinicalCohort StudiesConsumptionCross-Sectional StudiesDataDefectDilatation - actionDiseaseEngineeringEvaluationEventFunctional disorderGeneticGeometryGoalsHIF1A geneHealthcareHeartImageInterventionJointsKnowledgeLeadLifeLiquid substanceMachine LearningMagnetic ResonanceMagnetic Resonance ImagingManualsMeasurementMechanicsMedicalMedical ImagingMentorshipModelingNavier-Stokes equationsOperative Surgical ProceduresOutcomeOutcome StudyParis, FrancePathologicPathway interactionsPatient CarePatientsPediatric HospitalsPhasePhiladelphiaPhysiciansProcessPulmonary Valve InsufficiencyPulmonary Valve StenosisPulmonary artery structurePulmonary valve structureQuality of lifeRadiology SpecialtyResearchResearch PersonnelResidual stateResistanceRight Ventricular DysfunctionRiskScientistStressStructureTechnologyTetralogy of FallotThickTimeTrainingVariantVentricularVentricular ArrhythmiaVentricular FunctionWorkbaseclinical carecongenital heart disorderexperiencefollow-upheart functionhemodynamicsimprovedinsightlongitudinal analysismachine learning algorithmmachine learning methodmortalitymortality riskoutcome predictionpatient subsetspressurerepairedright ventricular remodelingserial imagingshear stresssimulationskillssuccesssupervised learningtwo-dimensional
项目摘要
Project Summary/Abstract
Tetralogy of Fallot (ToF) is the most common cyanotic congenital heart disease, affecting 0.3% of children.
Before correction, its four defects lead to increased right heart pressures and mixing of oxygenated and
deoxygenated blood. Even after surgical repair, patients may experience elevated right heart pressures and
volumes due to residual pulmonary stenosis, pulmonary regurgitation, scar formation, and conduction
abnormalities. These changes in geometry, wall thickness, and pressure-volume relationships all contribute to
right ventricular (RV) remodeling, which can eventually lead to adverse events such as ventricular arrhythmias,
RV dysfunction, and the need for pulmonic valve repair, affecting up to 44% of patients overall. Despite the great
advances that have been made in medical and surgical care of ToF patients, there is still limited understanding
of which patients will experience adverse RV remodeling and subsequent clinical events. ToF patients’ cardiac
function is normally assessed annually using cardiovascular magnetic resonance (CMR) imaging, which provides
excellent views of the right heart and its valves. However, manual analysis of these images is time-consuming
and subject to inter- and intra-user variability. Additionally, CMR provides anatomic and flow data enabling
quantification of pulmonary artery hemodynamics, but has not yet been investigated in post-repair ToF patients.
Detailed characterization of pulmonary artery stresses and pressures, through the application of computational
fluid dynamics (CFD) simulations, could provide insight into factors affecting RV remodeling. There remains an
unmet need to comprehensively identify features that characterize and predict progression from primary ToF
repair to adverse RV remodeling and poor outcomes. My objectives in this proposal are to identify the structural
and hemodynamic parameters of ToF that are associated with RV remodeling in order to improve both clinical
care and quality of life. I plan to approach these objectives using two specific aims. In Aim 1, I will develop a
supervised machine learning algorithm to accurately and automatically segment 3D cardiac volumes using CMR
images. This algorithm will enable robust and repeatable measurements of cardiac structure and function for
both cross-sectional and longitudinal analyses. I hypothesize that this algorithm will achieve accurate and precise
segmentation results as assessed by Dice scores and intraclass correlation coefficients. In Aim 2, I will study
patient-specific pulmonary artery hemodynamics and determine associations with adverse RV remodeling.
Specifically, I will generate 3D and 1D CFD models based upon CMR-derived geometries and phase-contrast
flow data. I hypothesize that hemodynamic parameters such as wall shear stress and total pathway resistance
will be associated with and provide mechanistic insight into RV remodeling. Overall, I anticipate that this project
will provide me with the experience and skills to help achieve my goal of becoming a physician-scientist with
expertise in cardiovascular physiology, medical imaging, and fluid dynamics, while leading to validated
technologies that will support clinicians and researchers in their understanding of ToF.
项目总结/摘要
法洛四联症(ToF)是最常见的紫绀型先天性心脏病,影响0.3%的儿童。
在纠正之前,其四个缺陷导致右心压力增加,氧合和
脱氧血即使在手术修复后,患者也可能会出现右心压力升高,
残余肺动脉狭窄、肺动脉返流、瘢痕形成和传导导致的体积
异常这些几何形状、壁厚和压力-体积关系的变化都有助于
右心室(RV)重构,其最终可导致不良事件,例如室性心律失常,
右心室功能障碍和肺动脉瓣修复的需要,影响了高达44%的患者。尽管大
尽管ToF患者的医疗和外科护理取得了进展,但对ToF患者的了解仍然有限。
其中患者将经历不利的RV重塑和随后的临床事件。ToF患者心脏
通常每年使用心血管磁共振成像(CMR)评估功能,
右心及其瓣膜的清晰视图。然而,手动分析这些图像是耗时的
并且受到用户间和用户内可变性的影响。此外,CMR提供解剖和血流数据,
肺动脉血流动力学的定量,但尚未在修复后ToF患者中进行研究。
肺动脉应力和压力的详细表征,通过应用计算
流体动力学(CFD)模拟可以深入了解影响RV重塑的因素。仍存在
未满足的需求,全面识别表征和预测主要ToF进展的特征
修复不良RV重塑和不良结局。我在这份提案中的目标是确定结构性的
和与RV重构相关的ToF的血流动力学参数,以改善临床
护理和生活质量。我计划通过两个具体目标来实现这些目标。在目标1中,我将开发一个
使用CMR精确自动分割3D心脏体积的监督机器学习算法
图像.该算法将实现心脏结构和功能的稳健和可重复测量,
横向和纵向分析。我假设这个算法能达到精确的
通过Dice评分和组内相关系数评估分割结果。在目标2中,我将学习
患者特异性肺动脉血流动力学,并确定与不良RV重塑的相关性。
具体来说,我将根据CMR导出的几何形状和相位对比生成3D和1D CFD模型
流量数据我假设血流动力学参数,如壁切应力和总通道阻力,
将与RV重塑相关并提供对RV重塑的机制性见解。总的来说,我预计这个项目
将为我提供经验和技能,以帮助实现我成为一名医生科学家的目标,
心血管生理学,医学成像和流体动力学方面的专业知识,同时导致经过验证的
这些技术将支持临床医生和研究人员对ToF的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Walker Thompson其他文献
Elizabeth Walker Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Walker Thompson', 18)}}的其他基金
Right Ventricular Remodeling in Tetralogy of Fallot
法洛四联症的右心室重构
- 批准号:
10708738 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 5.43万 - 项目类别: