Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动力学
基本信息
- 批准号:10388258
- 负责人:
- 金额:$ 9.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdvisory CommitteesAlgorithmsArthritisAtlasesAutoimmuneBenchmarkingBiological AssayBiological Response Modifier TherapyBiologyBiopsyBlocking AntibodiesCellsCellular biologyCluster AnalysisComputational BiologyDataData AnalysesData SetDegenerative polyarthritisDiseaseEquilibriumFibroblastsFutureGenesGeneticGenomicsHumanImmunologyIn VitroIndividualInflammationInstitutesIntegrinsJointsLeadLigandsMaintenanceMeasuresMediatingMentorsMeta-AnalysisMethodsModelingMolecularMolecular ProfilingNOTCH3 geneNaturePaperPathogenicityPathologicPathologic ProcessesPathway interactionsPhenotypePopulationPositioning AttributePrincipal InvestigatorProcessPublishingRNARecombinantsReproducibilityResearchRheumatoid ArthritisRheumatologyRoleSeriesSignal TransductionStatistical Data InterpretationSynovial MembraneTestingTherapeuticTimeTissuesTrainingbasecytokineefficacy testinggenetic signaturehigh dimensionalityhuman tissuein vivojoint injurymorphogensmultidisciplinarynew therapeutic targetnovelnovel strategiesreceptorsingle-cell RNA sequencingskillstherapeutic targettranscriptome sequencing
项目摘要
Project Summary
Pathological expansion of fibroblasts in the synovial tissue surrounding the joint drive disease in rheumatoid
arthritis (RA) and osteoarthritis (OA). Recent studies have identified molecularly and functionally distinct
phenotypes of synovial fibroblasts using single cell RNA sequencing (scRNAseq). One of the phenotypes,
found exclusively in the lining compartment of the synovium and expanded in both RA and OA, has been
implicated in tissue destruction in vivo. Previous studies have shown that synovial fibroblast phenotypes are
plastic, making them potentially inducible with biological therapies but difficult to study in vitro, as they lose
their phenotypes ex vivo. I propose two novel strategies to model the induction and maintenance of the
synovial lining phenotype. Preliminary analyses prioritized TGF𝛽 , a cytokine known to drive fibroblast
differentiation, in both strategies. The first strategy builds on the notion that fibroblast phenotypes are in
dynamic equilibrium and exist at multiple stages of induction in human tissue. Aim 2 will model these states in
over 100,000 fibroblasts from 108 synovial donor biopsies with the novel RNA velocity algorithm to infer lining
fibroblast differentiations processes and nominate driver genes. Aim 2 will either perform 108 separate
analyses combined through meta-analysis or do one joint analysis with Crescendo, to be developed in aim 1
as the first multi-donor RNA velocity analysis. The second strategy builds on preliminary data that show that
genes activated in phenotype induction are inactivated during phenotype loss ex vivo. Aim 3 will directly
experimentally assay the dynamics of phenotype loss ex vivo, profiling 150,000 fibroblast at multiple time
points with scRNAseq. Aim 3a will test the efficacy of exogenous TGF𝛽 stimulation to maintain the lining
phenotype ex vivo. Aim 3b will nominate and test more pathways from sophisticated analysis of the generated
time-course data. Together, these aims will identify molecular drivers of the lining phenotype and fuel novel
research on therapeutics to target lining fibroblasts.
I have expertise in single cell computational biology and synovial fibroblast genomics. I developed the
popular Harmony algorithm for single cell integration, published in Nature Methods and co-first authored a
paper detailing the induction of a novel fibroblast subtype necessary for arthritic disease in vivo, in press at
Nature. Completing the proposed research will help me build my analytical skills with time-course data analysis
and develop invaluable skills in experimental fibroblast biology. I will train Dr. Soumya Raychaudhuri, in
statistical analyses, co-mentor Dr. Michael Brenner, expert in synovial fibroblast biology, advisor Dr. Peter
Kharchenko, developer of RNA velocity, advisor Dr. Fiona Powrie, director of the Kennedy Institute for
Rheumatology, and advisor Dr. Christopher Buckley, expert in synovial fibroblast biology. With this multi-
disciplinary training, I will be become a principal investigator applying computational and experimental methods
to translational rheumatology research.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Korsunskiy其他文献
Ilya Korsunskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Korsunskiy', 18)}}的其他基金
Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动态
- 批准号:
10601120 - 财政年份:2021
- 资助金额:
$ 9.81万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant














{{item.name}}会员




