Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动力学
基本信息
- 批准号:10388258
- 负责人:
- 金额:$ 9.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdvisory CommitteesAlgorithmsArthritisAtlasesAutoimmuneBenchmarkingBiological AssayBiological Response Modifier TherapyBiologyBiopsyBlocking AntibodiesCellsCellular biologyCluster AnalysisComputational BiologyDataData AnalysesData SetDegenerative polyarthritisDiseaseEquilibriumFibroblastsFutureGenesGeneticGenomicsHumanImmunologyIn VitroIndividualInflammationInstitutesIntegrinsJointsLeadLigandsMaintenanceMeasuresMediatingMentorsMeta-AnalysisMethodsModelingMolecularMolecular ProfilingNOTCH3 geneNaturePaperPathogenicityPathologicPathologic ProcessesPathway interactionsPhenotypePopulationPositioning AttributePrincipal InvestigatorProcessPublishingRNARecombinantsReproducibilityResearchRheumatoid ArthritisRheumatologyRoleSeriesSignal TransductionStatistical Data InterpretationSynovial MembraneTestingTherapeuticTimeTissuesTrainingbasecytokineefficacy testinggenetic signaturehigh dimensionalityhuman tissuein vivojoint injurymorphogensmultidisciplinarynew therapeutic targetnovelnovel strategiesreceptorsingle-cell RNA sequencingskillstherapeutic targettranscriptome sequencing
项目摘要
Project Summary
Pathological expansion of fibroblasts in the synovial tissue surrounding the joint drive disease in rheumatoid
arthritis (RA) and osteoarthritis (OA). Recent studies have identified molecularly and functionally distinct
phenotypes of synovial fibroblasts using single cell RNA sequencing (scRNAseq). One of the phenotypes,
found exclusively in the lining compartment of the synovium and expanded in both RA and OA, has been
implicated in tissue destruction in vivo. Previous studies have shown that synovial fibroblast phenotypes are
plastic, making them potentially inducible with biological therapies but difficult to study in vitro, as they lose
their phenotypes ex vivo. I propose two novel strategies to model the induction and maintenance of the
synovial lining phenotype. Preliminary analyses prioritized TGF𝛽 , a cytokine known to drive fibroblast
differentiation, in both strategies. The first strategy builds on the notion that fibroblast phenotypes are in
dynamic equilibrium and exist at multiple stages of induction in human tissue. Aim 2 will model these states in
over 100,000 fibroblasts from 108 synovial donor biopsies with the novel RNA velocity algorithm to infer lining
fibroblast differentiations processes and nominate driver genes. Aim 2 will either perform 108 separate
analyses combined through meta-analysis or do one joint analysis with Crescendo, to be developed in aim 1
as the first multi-donor RNA velocity analysis. The second strategy builds on preliminary data that show that
genes activated in phenotype induction are inactivated during phenotype loss ex vivo. Aim 3 will directly
experimentally assay the dynamics of phenotype loss ex vivo, profiling 150,000 fibroblast at multiple time
points with scRNAseq. Aim 3a will test the efficacy of exogenous TGF𝛽 stimulation to maintain the lining
phenotype ex vivo. Aim 3b will nominate and test more pathways from sophisticated analysis of the generated
time-course data. Together, these aims will identify molecular drivers of the lining phenotype and fuel novel
research on therapeutics to target lining fibroblasts.
I have expertise in single cell computational biology and synovial fibroblast genomics. I developed the
popular Harmony algorithm for single cell integration, published in Nature Methods and co-first authored a
paper detailing the induction of a novel fibroblast subtype necessary for arthritic disease in vivo, in press at
Nature. Completing the proposed research will help me build my analytical skills with time-course data analysis
and develop invaluable skills in experimental fibroblast biology. I will train Dr. Soumya Raychaudhuri, in
statistical analyses, co-mentor Dr. Michael Brenner, expert in synovial fibroblast biology, advisor Dr. Peter
Kharchenko, developer of RNA velocity, advisor Dr. Fiona Powrie, director of the Kennedy Institute for
Rheumatology, and advisor Dr. Christopher Buckley, expert in synovial fibroblast biology. With this multi-
disciplinary training, I will be become a principal investigator applying computational and experimental methods
to translational rheumatology research.
项目摘要
类风湿疾病周围的滑膜组织中成纤维细胞的病理扩张
关节炎(RA)和骨关节炎(OA)。最近的研究已经鉴定出分子和功能不同
使用单细胞RNA测序(SCRNASEQ)的滑膜成纤维细胞的表型。表型之一,
仅在滑膜的衬里室中发现并在RA和OA中扩展
实施体内组织破坏。先前的研究表明,滑膜成纤维细胞表型是
塑料,使其具有生物疗法的可能诱导,但由于失去了体外研究
他们的表型离体。我提出了两种新型策略,以建模
滑膜衬里表型。初步分析优先考虑TGF𝛽,这是一种已知驱动成纤维细胞的细胞因子
分化,在这两种策略中。第一个策略是基于成纤维细胞表型所在的观念
动态平衡,存在于人体组织的多个诱导阶段。 AIM 2将在
具有新型RNA速度算法的108个滑膜供体活检中的100,000多个成纤维细胞可推断衬里
成纤维细胞分化过程并提名驱动基因。 AIM 2要么单独执行108个
通过荟萃分析合并的分析或与Crescendo进行一项联合分析,将在AIM 1中开发
作为第一个多偏RNA速度分析。第二种策略是基于初步数据,表明
在体内表型丧失期间,在表型诱导中激活的基因被灭活。 AIM 3将直接
实验性地断言表型损失的动力学,多个时间分析150,000个成纤维细胞
用scrnaseq的点。 AIM 3A将测试外源TGF𝛽刺激以保持衬里的有效性
表型外体。 AIM 3B将从对生成的生成的复杂分析提名和测试更多途径
时间课数据。这些目的共同确定了衬里表型和燃料小说的分子驱动因素
靶向成纤维细胞的治疗研究。
我在单细胞计算生物学和滑膜成纤维细胞基因组学方面具有专业知识。我开发了
用于单细胞整合的流行和谐算法,以自然方法出版,并首先撰写了
详细介绍体内artritice疾病的新型成纤维细胞亚型诱导的论文,按下
自然。完成拟议的研究将有助于我通过时间表数据分析来建立分析技能
并发展实验性成纤维细胞生物学的宝贵技能。我将培训Soumya Raychaudhuri博士
统计分析,合伙人迈克尔·布伦纳(Michael Brenner)博士,滑膜成纤维细胞生物学专家,顾问彼得
RNA Velocity的开发商Kharchenko,肯尼迪研究所主任Fiona Powrie博士
流变学和顾问克里斯托弗·巴克利(Christopher Buckley)博士,滑膜成纤维细胞生物学专家。有了这个多重的
纪律培训,我将成为采用计算和实验方法的首席研究员
翻译流变学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Korsunskiy其他文献
Ilya Korsunskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Korsunskiy', 18)}}的其他基金
Using high dimensional molecular data to decipher gene dynamics underlying pathogenic synovial fibroblasts
利用高维分子数据破译致病性滑膜成纤维细胞的基因动态
- 批准号:
10601120 - 财政年份:2021
- 资助金额:
$ 9.81万 - 项目类别:
相似海外基金
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
- 批准号:
10713424 - 财政年份:2023
- 资助金额:
$ 9.81万 - 项目类别:
Viral Diversity an Innovative Biomarker for Refining Estimates of HIV Incidence
病毒多样性是改进艾滋病毒发病率估计的创新生物标志物
- 批准号:
10676203 - 财政年份:2022
- 资助金额:
$ 9.81万 - 项目类别:
Viral Diversity an Innovative Biomarker for Refining Estimates of HIV Incidence
病毒多样性是改进艾滋病毒发病率估计的创新生物标志物
- 批准号:
10538707 - 财政年份:2022
- 资助金额:
$ 9.81万 - 项目类别:
Predicting post-transplant kidney function from pre-transplant biopsy and clinical biomarkers using a convolutional neural network
使用卷积神经网络根据移植前活检和临床生物标志物预测移植后肾功能
- 批准号:
10462527 - 财政年份:2021
- 资助金额:
$ 9.81万 - 项目类别:
Predicting post-transplant kidney function from pre-transplant biopsy and clinical biomarkers using a convolutional neural network
使用卷积神经网络根据移植前活检和临床生物标志物预测移植后肾功能
- 批准号:
10315165 - 财政年份:2021
- 资助金额:
$ 9.81万 - 项目类别: