Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率下 TBI 的时空分子底物
基本信息
- 批准号:10386933
- 负责人:
- 金额:$ 56.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAnxietyAtlasesBehaviorBiological MarkersBrainBrain ConcussionBrain regionCell CommunicationCellsCellular Metabolic ProcessChronicCognitiveCommunitiesComplexComputer ModelsDataDimensionsDiseaseDoseEmotionalEnergy MetabolismEventFluorescent in Situ HybridizationFunctional disorderGene Expression RegulationGenesGenomicsGoalsHeterogeneityHippocampus (Brain)In SituIndividualInflammationInjuryInterventionKnowledgeLearningMapsMeasurementMemoryMental DepressionMetabolicMetabolic PathwayMetabolismMitochondriaModelingModernizationMolecularMusNeuronal PlasticityPathogenesisPathogenicityPathologicPathologyPathway interactionsPatternPeptidesPharmacodynamicsPhasePopulationPost-Traumatic Stress DisordersRegulationResolutionResourcesRoleSiteSocial BehaviorSportsSynaptic plasticitySystems BiologyTechnologyTestingTherapeuticTimeTraumatic Brain InjuryValidationYangbrain cellcell typechronic traumatic encephalopathycognitive processemotional behaviorfrontal lobegene networkhigh throughput technologyhumanininnovationinsightmild traumatic brain injurymultidisciplinarynervous system disordernetwork modelsneuropathologyneurotransmissionnovelnovel therapeutic interventionpreventresponsesingle cell technologysingle-cell RNA sequencingspatiotemporaltranscriptometranslational medicinetreatment effect
项目摘要
Abstract
Traumatic brain injury (TBI) has a complex neuropathology involving progressive alterations in brain centers
that process cognitive and emotional behaviors and consist of heterogeneous cell populations. The complex
spatiotemporal cell and molecular circuits underlying progressive TBI pathologies that can evolve into other
disorders such as chronic traumatic encephalopathy and posttraumatic stress disorder remain to be
understood. A comprehensive understanding of the molecular mechanisms underlying the complexity of TBI
has been hindered by the lack of effective approaches to examine molecular events in individual brain cells
that drive the overall pathology. We recently conducted a single cell resolution study of the hippocampus at the
acute phase (24hr) of TBI using single cell RNA sequencing (scRNAseq) and revealed cell-type specific
pathways and regulators of TBI. In particular, we found that depression of cell metabolism to be a key
pathogenic component in the hippocampus at the acute phase of TBI. This finding suggests that tracking
metabolic state of cells can be used to address key knowledge gaps on the spatial and time dependent
progression of key pathologic drivers of TBI. Here we propose to test the hypothesis that cell metabolic
regulators determine dynamic and spatial pathogenic pathways of TBI by harnessing the power of modern
high-throughput technologies. We propose a highly integrative team approach to profit from recent advances in
single cell RNA sequencing (scRNAseq) and multiplexed error robust fluorescent in situ hybridization
(MERFISH) along with advanced gene-gene and cell-cell network modeling to inform on targets for intervention
at specific time points or brain sites, a fundamental unsolved question in the TBI field. In Aim 1, we propose to
utilize a unique combination of scRNAseq, MERFISH, and network modeling approaches to assess and
validate the spatial and temporal vulnerability of each cell type to TBI in multiple brain regions at multiple time
points in a data-driven, unbiased manner, which can inform us about hidden regulators of TBI pathogenesis.
We will focus on the spatial and temporal changes in cellular metabolic pathways during TBI progression. Our
preliminary results support that mt-Rnr2, encoding a mitochondrial peptide humanin and involved in cell
metabolism, is a major site- and time-dependent driver of TBI. In Aim 2, we will functionally assess whether
modulating mt-Rnr2 (humanin) has therapeutic potential to mitigate TBI pathology and prevent progression.
We will also explore the cell-type specific mechanisms, especially the role of metabolism, underlying the
actions of humanin. The overall goal of the proposal is to elaborate on an innovative strategy that can offer a
comprehensive mechanistic understanding of the spatiotemporal cell substrates of TBI pathology and uncover
novel targets and mechanisms to redirect the courses of TBI to overcome subsequent neurological disorders.
摘要
创伤性脑损伤(TBI)具有复杂的神经病理学,涉及脑中枢的进行性改变
处理认知和情感行为,由异质细胞群组成。复杂
时空细胞和分子电路潜在的进展性TBI病理,可以演变成其他
诸如慢性创伤性脑病和创伤后应激障碍之类的疾病仍有待于
明白全面了解TBI复杂性的分子机制
由于缺乏有效的方法来检查单个脑细胞中的分子事件,
导致了整体的病理学变化我们最近对海马进行了一项单细胞分辨率研究,
使用单细胞RNA测序(scRNAseq)对TBI的急性期(24小时)进行分析,
TBI的通路和调节剂。特别是,我们发现细胞代谢的抑制是一个关键,
脑外伤急性期海马中的致病成分。这一发现表明,跟踪
细胞的代谢状态可用于解决空间和时间依赖性的关键知识缺口,
TBI的关键病理驱动因素的进展。在这里,我们提出测试的假设,细胞代谢
调节器通过利用现代生物学的力量来确定TBI的动态和空间致病途径。
高通量技术。我们提出了一个高度整合的团队方法,以从最近的进展中获益,
单细胞RNA测序(scRNAseq)和多重错误稳健荧光原位杂交
(MERFISH)沿着先进的基因-基因和细胞-细胞网络建模,为干预目标提供信息
在特定的时间点或大脑部位,这是TBI领域一个基本的未解决的问题。在目标1中,我们建议
利用scRNAseq、MERFISH和网络建模方法的独特组合来评估和
验证在多个时间多个脑区域中每种细胞类型对TBI的空间和时间脆弱性
以数据驱动的,无偏见的方式,这可以告诉我们TBI发病机制的隐藏调节因子。
我们将重点关注TBI进展过程中细胞代谢途径的时空变化。我们
初步结果支持mt-Rnr 2,编码线粒体肽humanin并参与细胞凋亡,
代谢是TBI的主要部位和时间依赖性驱动因素。在目标2中,我们将从功能上评估
调节mt-Rnr 2(humanin)具有减轻TBI病理和防止进展的治疗潜力。
我们还将探讨细胞类型的具体机制,特别是代谢的作用,潜在的
人性的行动。该提案的总体目标是制定一项创新战略,
全面了解TBI病理学的时空细胞基质的机制,
新的目标和机制,以重新定向TBI的过程,以克服随后的神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fernando Gomez-Pinilla其他文献
Fernando Gomez-Pinilla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fernando Gomez-Pinilla', 18)}}的其他基金
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
10303991 - 财政年份:2021
- 资助金额:
$ 56.46万 - 项目类别:
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
10548225 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
9916553 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
10084332 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Strategy to Potentiate Rehabilitation after TBI
加强 TBI 后康复的策略
- 批准号:
10308503 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
10556740 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Strategy to Potentiate Rehabilitation after TBI
加强 TBI 后康复的策略
- 批准号:
10533276 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率下 TBI 的时空分子底物
- 批准号:
10200171 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Precision Medicine Approach: Using genomic information to guide TBI treatment
精准医学方法:利用基因组信息指导 TBI 治疗
- 批准号:
10328921 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
Spatiotemporal Molecular Substrates of TBI at Single Cell Resolution
单细胞分辨率 TBI 的时空分子底物
- 批准号:
10606498 - 财政年份:2020
- 资助金额:
$ 56.46万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 56.46万 - 项目类别:
Research Grant














{{item.name}}会员




