Inositol pyrophosphate dynamics affect RNA 3'-processing/transcription termination
肌醇焦磷酸动力学影响 RNA 3-加工/转录终止
基本信息
- 批准号:10386823
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acid PhosphataseAffectApoptosisBindingBinding SitesBiochemicalC-terminalCell physiologyCell surfaceCellsComplexDNA Polymerase IIDefectDiabetes MellitusDiphosphatesEnzymesEventFission YeastGene ExpressionGenerationsGenesGeneticGenetic TranscriptionGlycerophosphatesGrowthHomeostasisHumanHuman PathologyIn VitroInorganic Phosphate TransporterInositolLinkMalignant NeoplasmsMammalian CellMediatingMessenger RNAMethodsMolecularMutationObesityPathway interactionsPhosphoproteinsPhosphorylationPhosphotransferasesPlantsPoly APolymeraseProtein KinaseProteinsRNARNA Polymerase IIRegulonRepressionRoleSignal Transduction PathwaySignaling MoleculeSiteSpecific qualifier valueStarvationTelomere MaintenanceTestingTranscriptUntranslated RNAYeastsactivating transcription factorbasecell growth regulationcell motilitycell typeexperimental studyfungusgenome-widehearing impairmenthuman diseaseinorganic phosphateinsightmRNA Cleavage and Polyadenylation Factorspleiotropismpromoterpyrophosphatasetermination factortraffickingtranscription termination
项目摘要
Project summary
Inositol pyrophosphates (IPPs) are signaling molecules involved in diverse cellular processes
from telomere maintenance and apoptosis to vesicular trafficking and cell migration. Alterations
in IPP levels (via mutations in IPP metabolizing enzymes) are linked to human pathology including
cancer, obesity, diabetes and hearing loss. The pleiotropic effects suggest that inositol
pyrophosphates have the ability to control very basic cellular functions. IPPs are known to
participate in phosphate sensing and phosphate homeostasis in yeast, plant and mammalian
cells. Fungi respond to phosphate starvation by inducing the transcription of phosphate
acquisition genes. The phosphate regulon in the fission yeast Schizosaccharomyces pombe
comprises three genes that specify, respectively, a cell surface acid phosphatase Pho1, an
inorganic phosphate transporter Pho84, and a glycerophosphate transporter Tgp1. Expression of
pho1, pho84, and tgp1 is actively repressed during growth in phosphate-rich medium by the
transcription in cis of a long noncoding (lnc) RNA from the respective 5' flanking genes prt, prt2,
and nc-tgp1. It is proposed that transcription of the upstream lncRNA interferes with expression
of the downstream mRNA genes by displacing the activating transcription factor Pho7 from its
binding site(s) in the mRNA promoters. The key discoveries underlying the present proposal are
our findings that: (i) 3’-processing and transcription termination is a control point in the lncRNA-
mediated repression of 3’-flanking gene expression, and (ii) Pho1 expression from the prt–pho1
locus is a sensitive read-out of cellular influences on termination. Based on these findings, we
hypothesize that IPP dynamics affect 3’-processing/transcription termination and influence
poly(A) site usage. Specific aims are to: (1) use genetic array analyses and reveal the extent to
which the functions of 3’ processing/transcription termination factors, the RNA Pol II CTD, and
factors involved in sculpting the CTD phosphorylation array depend on IPP levels; (2) assess –
at the genome-wide level – the impact of IPP dynamics on gene expression and 3’-end formation,
by analyzing mRNA and nascent RNA profiles and mapping poly(A) sites in wild-type cells and in
cells with altered IPP levels; and (3) explore mechanisms by which IPPs influence Pol2
transcription termination. Using in vitro synthesized IPPs, we will test whether components of the
3’-processing/transcription termination machinery are targets for pyrophosphorylation and
whether IPPs affect the activities of CTD kinases. We expect to gain new and general insights
into the role of these important signaling molecules in gene expression, and to illuminate the
signal transduction pathway involved in fission yeast phosphate homeostasis.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BEATE SCHWER其他文献
BEATE SCHWER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BEATE SCHWER', 18)}}的其他基金
Inositol pyrophosphate dynamics affect RNA 3'-processing/transcription termination
肌醇焦磷酸动力学影响 RNA 3-加工/转录终止
- 批准号:
9802946 - 财政年份:2019
- 资助金额:
$ 33.9万 - 项目类别:
Inositol pyrophosphate dynamics affect RNA 3'-processing/transcription termination
肌醇焦磷酸动力学影响 RNA 3-加工/转录终止
- 批准号:
10659967 - 财政年份:2019
- 资助金额:
$ 33.9万 - 项目类别:
Deciphering the RNA Polymerase II CTD Code
破译 RNA 聚合酶 II CTD 代码
- 批准号:
9229041 - 财政年份:1995
- 资助金额:
$ 33.9万 - 项目类别:
STRUCTURE/FUNCTION ANALYSIS OF SPLICEOSOMAL ATPASES
剪接体ATP酶的结构/功能分析
- 批准号:
6138479 - 财政年份:1994
- 资助金额:
$ 33.9万 - 项目类别:
Structure/Function Analysis of Spliceosomal ATpases
剪接体 ATpases 的结构/功能分析
- 批准号:
6993600 - 财政年份:1994
- 资助金额:
$ 33.9万 - 项目类别:
Structure-Function Analysis of Spliceosomal ATPases
剪接体 ATP 酶的结构功能分析
- 批准号:
8069334 - 财政年份:1994
- 资助金额:
$ 33.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




