Leveraging Heterogeneity in Preclinical Traumatic Brain Injury to Drive Discovery and Reproducibility
利用临床前创伤性脑损伤的异质性来推动发现和重现性
基本信息
- 批准号:10212363
- 负责人:
- 金额:$ 4.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-02-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelBig DataBiologicalBiological MarkersBiomechanicsBrain regionChronicClinicClinicalClosed head injuriesCommon Data ElementComplexDataData AnalysesData CollectionData CommonsData ElementData ScienceData SetDevelopmentFoundationsGoalsHeterogeneityIncidenceIndividualInflammationInformaticsInjuryInstitutesMachine LearningMeasuresMethodsModelingMultivariate AnalysisNational Institute of Neurological Disorders and StrokeOutcomePathway interactionsPatternPharmacologic SubstancePopulationPositioning AttributePre-Clinical ModelPrincipal Component AnalysisPublishingReproducibilityResearchSeveritiesStandardizationSynaptic plasticityTherapeuticTimeLineTranslatingTranslational ResearchTranslationsTraumatic Brain Injurybehavioral outcomebench to bedsidebiomarker discoverycontrolled cortical impactdata curationdata frameworkdata harmonizationdata sharingdisabilityexperimental studyfunctional outcomesgenetic manipulationimprovedinsightmultidimensional datamultiple datasetsnerve injurynervous system disorderneuroinflammationopen datapatient subsetspre-clinicalpre-clinical researchprecision medicinerepositoryresponseresponse to injury
项目摘要
Traumatic brain injury (TBI) is a leading cause of neurological disorders and affects over 2.5 million people each
year, yet no treatment has successfully translated from bench to clinic. TBI is a broad term and encompasses
an extremely heterogeneous set of injuries differing by cause, severity, biomechanics, and the varied, complex
secondary injury responses that collectively result in chronic disabilities. Current preclinical research circumvents
the issue of TBI heterogeneity by relying on specific preclinical animal models that mimic subpopulations of
patients and particular secondary injury mechanisms with each study focusing on limited, individual pathways.
This proposal instead aims to tackle TBI heterogeneity by approaching TBI as a “big data” problem and
aggregating and analyzing the multidimensional data collectively. A framework for data harmonization and
curation will be developed, and datasets from a consortium of preclinical labs employing a variety of preclinical
TBI models will be collected and curated into an open data commons (ODC-TBI). Utilizing machine learning and
multidimensional analytics, the proposed research will directly leverage TBI heterogeneity in the merged dataset
to identify persistent features of TBI to empower translational research. By creating a preclinical TBI ODC and
applying machine learning to integrate the heterogeneity of preclinical TBI models, the project will reveal
multidimensional features of TBI across heterogeneous injuries and characterize how diverse secondary injury
mechanisms interact and ultimately affect injury outcome. Throughout the project's timeline, new datasets will
continue to be harmonized into the ODC-TBI according to the established framework. The ODC-TBI will be the
first open multicenter, multi-model repository of preclinical TBI data and will enable the application of data science
to the field of TBI. Furthermore, the ODC-TBI and the methods implemented throughout the project will be openly
shared to improve reproducibility of TBI research. Together with the multidimensional analysis that will provide
quantitative and qualitative understanding of TBI heterogeneity, the project aims to ultimately accelerate data-
driven discovery and precision medicine for TBI.
创伤性脑损伤(TBI)是神经系统疾病的主要原因,并且每个创伤性脑损伤影响超过250万人。
然而,没有一种治疗方法成功地从实验室转移到诊所。TBI是一个广泛的术语,包括
一组因原因、严重程度、生物力学和各种复杂的
二次伤害反应,共同导致慢性残疾。目前的临床前研究规避了
TBI异质性的问题依赖于特定的临床前动物模型,
患者和特定的继发性损伤机制,每项研究都侧重于有限的个体途径。
相反,该提案旨在通过将TBI视为“大数据”问题来解决TBI异质性,
集中地聚集和分析多维数据。数据统一框架,
将开发策展,并使用各种临床前实验室的临床前实验室联盟的数据集,
TBI模型将被收集并整理到开放数据共享(ODC-TBI)中。利用机器学习和
多维分析,拟议的研究将直接利用合并数据集中的TBI异质性
识别TBI的持续特征,以增强转化研究。通过创建临床前TBI ODC,
应用机器学习来整合临床前TBI模型的异质性,该项目将揭示
TBI在异质性损伤中的多维特征,并描述继发性损伤的多样性
机制相互作用并最终影响损伤结果。在整个项目的时间轴中,新的数据集将
根据既定框架,继续将其统一纳入臭氧消耗物质技术性基础设施。ODC-TBI将是
首个开放的多中心、多模型临床前TBI数据库,将实现数据科学的应用
TBI领域。此外,ODC-TBI和整个项目实施的方法将公开
共享以提高TBI研究的可重复性。再加上多方面的分析,
TBI异质性的定量和定性理解,该项目旨在最终加速数据-
驱动的发现和精确的治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome.
- DOI:10.1371/journal.pone.0265254
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Chou A;Torres-Espin A;Kyritsis N;Huie JR;Khatry S;Funk J;Hay J;Lofgreen A;Shah R;McCann C;Pascual LU;Amorim E;Weinstein PR;Manley GT;Dhall SS;Pan JZ;Bresnahan JC;Beattie MS;Whetstone WD;Ferguson AR;TRACK-SCI Investigators
- 通讯作者:TRACK-SCI Investigators
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin C Chou其他文献
Austin C Chou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin C Chou', 18)}}的其他基金
Leveraging Heterogeneity in Preclinical Traumatic Brain Injury to Drive Discovery and Reproducibility
利用临床前创伤性脑损伤的异质性来推动发现和重现性
- 批准号:
10042756 - 财政年份:2020
- 资助金额:
$ 4.52万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 4.52万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Studentship