Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
基本信息
- 批准号:10390516
- 负责人:
- 金额:$ 65.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAlgorithmsAmplifiersBrainBrain imagingBrain scanCaliberClinicalCodeComplexCustomDataDictionaryDiseaseFingerprintGenerationsHeadHeatingHumanImageLesionLoudnessMRI ScansMachine LearningMagnetic Resonance ImagingMaintenanceMapsMedical ImagingMethodsNutsOutputPatientsPerformancePeripheral Nerve StimulationPeripheral NervesPhasePhysiologic pulseProcessPropertyRF coilReaderRenaissanceResolutionRotationSafetyScanningSignal TransductionSiteSpeedSystemTimeTissuesTrainingTranslatingVariantbasecontrast imagingcostcost effectivedesignexperienceexperimental studyflexibilityhuman subjectimaging modalityimaging systemimprovedin vivomagnetic fieldnoveloperationportabilityquantitative imagingradio frequencyradiologistreconstructiontransmission processwireless
项目摘要
Project Summary
Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modalities because of its
ability to detect and characterize lesions throughout the body. However, access to MRI is severely limited by its
expensive hardware, complex siting requirements and typically-qualitative images, which require highly skilled
radiologists to interpret. This project proposes a fundamentally new way to encode MRI that could enable sub-
stantially cheaper and more flexible quantitative MRI scanners.
Today the overwhelming majority of MRI scans are encoded using two primary methods: B0 gradients
and parallel imaging using an array of receiver coils. B0 gradients take up a significant fraction of the bore diam-
eter; are loud and induce peripheral nerve stimulation, compromising patient comfort; they have relatively long
switching times due to the high inductance of the coils; they require bulky cooling systems and customized am-
plifiers; they are expensive, representing 25-30% of the cost of a clinical scanner; and they must be carefully
designed and customized to a scanner's B0 magnet. B0 gradient encoding also suffers from spatial errors due to
concomitant terms, which increase with decreasing B0 field strength and will limit the performance of emerging
portable and low-cost MRI systems. Parallel imaging enables scan acceleration by differentiating signals across
large spatial distances, but cannot encode complete images on its own. While some have proposed a third class
of encoding methods using radiofrequency transmit (B1+) gradients, none of the methods described to date have
been translated into clinical use because of practical limits on their performance, stringent hardware requirements
and lack of flexibility in image contrast.
This project will develop and validate a fourth, fundamentally new way to encode MRI based on parallel
transmission using B1+-selective pulses produced by wireless RF coil units with on-coil amplifiers that perform
RF transmission and reception, combined with an acquisition and reconstruction process inspired by MR Finger-
printing (MRF). This new method, Selective Encoding through Nutation and Fingerprinting (SENF), completely
eliminates the need for B0 gradients and is compatible with a wide range of magnet designs and flexible ac-
quisition strategies. Unlike previous B1+ imaging methods, SENF places no strict spatial variation requirements
on the RF gradient fields, which enables flexible system design, and the same coils can be used for spatial en-
coding and signal reception. Furthermore, instead of suffering from errors due to complex spin dynamics during
RF encoding, SENF leverages those dynamics to its advantage to differentiate quantitative tissue parameters.
Successful completion of this project will enable a new generation of cheaper, more accessible, more modular,
and lower-maintenance MRI scanners with quantitative outputs that can be more directly related to disease and
tissue states.
项目摘要
磁共振成像(MRI)是最重要的医学成像模式之一,因为其具有良好的成像质量。
检测和表征全身病变的能力。然而,MRI的使用受到其
昂贵的硬件,复杂的选址要求和典型的定性图像,这需要高度熟练的
放射科医生来解释。该项目提出了一种全新的MRI编码方法,
更便宜和更灵活的定量MRI扫描仪。
目前,绝大多数MRI扫描使用两种主要方法进行编码:B 0梯度
以及使用接收器线圈阵列的并行成像。B 0梯度占孔直径的很大一部分,
声音大并引起外周神经刺激,损害患者舒适度;它们具有相对长的
开关时间由于线圈的高电感;它们需要庞大的冷却系统和定制的AM,
它们是昂贵的,占临床扫描仪成本的25-30%;并且它们必须小心地
专为扫描仪的B 0磁铁而设计和定制。B 0梯度编码还遭受空间误差,
伴随的条款,随着B 0场强度的下降而增加,并将限制新兴市场的表现。
便携式低成本MRI系统。并行成像通过区分信号来实现扫描加速
大的空间距离,但不能自己编码完整的图像。虽然有些人提出了第三类
在使用射频发射(B1+)梯度的编码方法中,迄今为止所描述的方法都不
由于其性能的实际限制,严格的硬件要求,
以及在图像对比度方面缺乏可伸缩性。
该项目将开发并验证第四种基于并行的全新MRI编码方法
使用无线RF线圈单元产生的B1+选择性脉冲进行传输,线圈上放大器可执行
RF发射和接收,结合受MR Finger启发的采集和重建过程,
打印(MRF)。这种新方法,通过章动和指纹选择性编码(SENF),完全
消除了对B 0梯度的需要,并与各种磁体设计和可伸缩交流电源兼容,
收购战略。与以前的B1+成像方法不同,SENF没有严格的空间变化要求
在射频梯度场,这使得灵活的系统设计,相同的线圈可用于空间增强,
编码和信号接收。此外,代替遭受由于复杂的自旋动力学而引起的误差,
RF编码,SENF利用这些动态特性来区分定量组织参数。
该项目的成功完成将带来新一代更便宜、更方便、更模块化、
和低维护的MRI扫描仪,其定量输出可以更直接地与疾病相关,
组织状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William A Grissom其他文献
William A Grissom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William A Grissom', 18)}}的其他基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10630200 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Fast Methods for Mapping Focused Ultrasound Pressure Fields
绘制聚焦超声压力场的快速方法
- 批准号:
9388181 - 财政年份:2017
- 资助金额:
$ 65.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8833279 - 财政年份:2014
- 资助金额:
$ 65.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9040161 - 财政年份:2014
- 资助金额:
$ 65.35万 - 项目类别:
Array-Compressed Parallel Transmission for High Resolution Neuroimaging at 7T
用于 7T 高分辨率神经成像的阵列压缩并行传输
- 批准号:
10093035 - 财政年份:2014
- 资助金额:
$ 65.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8697577 - 财政年份:2014
- 资助金额:
$ 65.35万 - 项目类别:
相似海外基金
Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
- 批准号:
2907459 - 财政年份:2023
- 资助金额:
$ 65.35万 - 项目类别:
Studentship
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
- 批准号:
RGPIN-2021-03147 - 财政年份:2022
- 资助金额:
$ 65.35万 - 项目类别:
Discovery Grants Program - Individual
Acceleration framework for training deep learning by cooperative with algorithms and computer architectures
通过与算法和计算机架构合作训练深度学习的加速框架
- 批准号:
21K17768 - 财政年份:2021
- 资助金额:
$ 65.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Efficient algorithms and succinct data structures for acceleration of telescoping and related problems
用于加速伸缩及相关问题的高效算法和简洁数据结构
- 批准号:
RGPIN-2021-03147 - 财政年份:2021
- 资助金额:
$ 65.35万 - 项目类别:
Discovery Grants Program - Individual
Material and Device Building Blocks for Hardware Acceleration of Machine Learning and Artificial Intelligence Algorithms
用于机器学习和人工智能算法硬件加速的材料和设备构建模块
- 批准号:
2004791 - 财政年份:2020
- 资助金额:
$ 65.35万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
- 批准号:
1909291 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
- 批准号:
ST/S005560/1 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Training Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
- 批准号:
1909298 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Standard Grant
Acceleration of trigger algorithms with FPGAs at the LHC implemented using higher-level programming languages
使用高级编程语言在 LHC 上使用 FPGA 加速触发算法
- 批准号:
2348748 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Studentship
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
- 批准号:
1909379 - 财政年份:2019
- 资助金额:
$ 65.35万 - 项目类别:
Standard Grant