Fast Methods for Mapping Focused Ultrasound Pressure Fields
绘制聚焦超声压力场的快速方法
基本信息
- 批准号:9388181
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3D ultrasoundAcousticsAddressAdoptedBenchmarkingBlood - brain barrier anatomyClinicClinicalCommunicationComputer softwareConeDevelopmentDevicesDictionaryDimensionsDrug Delivery SystemsEquationEquilibriumExperimental DesignsFibroid TumorFocused UltrasoundFocused Ultrasound TherapyGeometryGoalsGoldHourImageImaging DeviceIn SituLasersLightLiquid substanceLocationMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityModelingMorphologic artifactsMotionNeedlesOptical MethodsOpticsPatternPrivatizationProcessProtocols documentationRadiationRecording of previous eventsRefractive IndicesResearchResolutionSafetySamplingScanningShapesShipsSpeedSystemTabletsTechniquesTechnologyTherapeuticTimeTransducersTranslatingUltrasonic TransducerUltrasonographyValidationVisible RadiationWaterWorkbasebrain surgerycostdensitydesigndosimetryflexibilityimaging systeminnovationinstrumentmathematical modelmathematical theoryportabilitypre-clinicalpressurequality assurancereconstructionresearch and developmentsimulationspatiotemporaltheoriestomographytooltreatment planningtumor
项目摘要
Project Summary
The goal of this R21 EBRG project is to develop new optical methods to map high intensity focused ultrasound
(HIFU) pressure fields. The methods would enable simple, fast, and low-cost in situ HIFU beam measurements,
which are needed for quality assurance and safety in the clinic, and to accelerate the pace of research and
development of new HIFU applications and technologies.
An ideal beam mapping instrument would be low cost, capable of rapidly measuring relevant acoustic
parameters of clinical HIFU systems in situ between treatments, and usable by nontechnical experts. Needle
hydrophones are currently the gold standard tool for mapping HIFU pressure fields, but are poorly suited to
the measurement task since they sample only one spatial location at a time, and most can only measure sub-
therapeutic pressures. They can be translated in a water tank by a motion stage to produce spatially-resolved
pressure maps, but this is a slow and cumbersome measurement that can take several hours to complete. The
techniques proposed in this application could meet this clinical need and also provide a fast, flexible, and spatially-
resolved beam mapping instrument that would be invaluable for HIFU research since it would enable rapid val-
idation and experimental designs that are currently infeasible, such as mapping pressure fields across multiple
experimental variables. Standard optical schlieren imaging has a long history in 2D and 3D ultrasound pressure
field mapping but has conventionally been applied using sophisticated and expensive high-speed optical setups
with limited field-of-view, limited portability and high cost. The methods and devices proposed in this project are
instead based on a newer schlieren technique called background oriented schlieren (BOS) imaging, and in their
simplest form can be implemented using just a water tank, a tablet PC and a webcam. In essence, BOS trades
the sophisticated optical setup for more sophisticated computation, which is a much cheaper commodity.
The central innovation in this project is to use BOS imaging to quantitatively map continuous-wave HIFU
pressure fields in 2D and 3D. The first Aim is to develop portable hardware for BOS imaging and tomography,
that can be used with a wide variety of HIFU systems in situ. The second Aim is to develop the mathematical
theory underlying the BOS image formation process for HIFU beam mapping, which is different from conventional
BOS imaging since the underlying refractive index field is not static. The third Aim is to develop acquisition
and reconstruction methods that produce quantitative spatially-resolved pressure field maps, and validate those
maps against simulations and optical hydrophone measurements of state-of-the-art HIFU systems. By developing
and disseminating BOS hardware, theory, and methods for quantitative 2D and 3D HIFU beam mapping, this
development project will lead to fast, simple and robust devices that can be widely adopted and even shipped
with each clinical HIFU system for regular quality assurance and exposimetry measurements.
项目摘要
这个R21 EBRG项目的目标是开发新的光学方法来映射高强度聚焦超声
(HIFU)压力场。该方法将能够实现简单、快速和低成本的原位HIFU束测量,
这是临床质量保证和安全所需的,并加快了研究和
开发新的HIFU应用和技术。
理想的波束成像仪器应是低成本的,能够快速测量相关的声学参数,
治疗之间的临床HIFU系统原位参数,可由非技术专家使用。针
水听器目前是标测HIFU压力场的黄金标准工具,但不适合
测量任务,因为他们一次只采样一个空间位置,而且大多数只能测量亚空间位置。
治疗压力它们可以通过运动台在水箱中平移以产生空间分辨的
压力图,但这是一个缓慢而繁琐的测量,可能需要几个小时才能完成。的
本申请中提出的技术可以满足这种临床需要,并且还提供快速、灵活和空间上-
解决光束映射仪器,这将是非常宝贵的HIFU研究,因为它将使快速瓦尔-
目前不可行的验证和实验设计,例如在多个区域映射压力场
实验变量标准光学纹影成像在2D和3D超声压力方面具有悠久的历史
场映射,但是传统上使用复杂且昂贵的高速光学设置来应用
具有有限的视场、有限的便携性和高成本。本项目提出的方法和装置是
而是基于称为背景定向纹影(BOS)成像的较新的纹影技术,并且在其
最简单的形式可以使用水箱,平板电脑和网络摄像头来实现。本质上,BOS交易
复杂的光学装置用于更复杂的计算,这是一种便宜得多的商品。
该项目的核心创新是使用BOS成像来定量映射连续波HIFU
二维和三维的压力场。第一个目标是开发用于BOS成像和断层扫描的便携式硬件,
其可以与多种HIFU系统原位使用。第二个目标是发展数学
HIFU束映射的BOS成像过程的理论基础,这不同于传统的
BOS成像,因为底层折射率场不是静态的。第三个目标是发展收购
和重建方法,产生定量的空间分辨压力场图,并验证这些
与最先进的HIFU系统的模拟和光学水听器测量进行映射。发展中
和传播BOS硬件,理论和定量2D和3D HIFU束映射的方法,
开发项目将导致快速,简单和强大的设备,可以广泛采用,甚至装运
与每个临床HIFU系统一起进行定期质量保证和曝光测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William A Grissom其他文献
William A Grissom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William A Grissom', 18)}}的其他基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10630200 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Gradient-Free Quantitative MRI using a Combination of B1-Selective Excitation and Fingerprinting
结合使用 B1 选择性激励和指纹识别的无梯度定量 MRI
- 批准号:
10390516 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8833279 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9040161 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Array-Compressed Parallel Transmission for High Resolution Neuroimaging at 7T
用于 7T 高分辨率神经成像的阵列压缩并行传输
- 批准号:
10093035 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8697577 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Launch Supplement