Quantification and automated characterization of mucus plug pathology in asthmatics

哮喘患者粘液栓病理学的量化和自动表征

基本信息

  • 批准号:
    10389530
  • 负责人:
  • 金额:
    $ 7.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Project Summary Mucus plugging has long been implicated in acute and fatal respiratory events in severe asthma, but we have recently shown that chronic mucus plugging is common in asthmatic patients and appears mechanistically linked with both impaired airflow and worsening disease severity. In particular, in analyses of baseline computed tomography (CT) lung scans in asthmatic patients, we found that airway mucus plugs are highly prevalent, persist for many years, frequently occur without cough and sputum symptoms, and are strongly associated with airflow obstruction. However, it is unknown what radiographic characteristics of mucus plugging cause severe airflow obstruction, in part because detailed characterization of mucus plugs on CT scan is extremely labor intensive and requires highly trained thoracic radiologists for assessment. In Aim 1 of this application, we propose to test the hypotheses, informed by our preliminary data, that three radiographic features of mucus plugs— mucus plug volume, number of proximal plugs, and fraction of airway tree occluded —all predict worsening airflow obstruction. We additionally propose that the airway tree can be converted into a network of resistive elements in which the effective resistance of the entire tree is computed with and without mucus plugs, and the relative contribution of mucus plugs to airway resistance can be determined. In Aim 2, we aim to substantially lower the barrier to quantification of mucus plugging on CT scans by developing an automated, convolutional neural network-based algorithm for mucus plug segmentation. We believe that our findings will allow the identification of a large subset of patients with chronic severe “mucushigh” asthma and raise possibilities for novel mucus-targeted treatments to improve airflow and other disease outcomes in this subset of patients.
项目摘要 粘液堵塞长期以来一直与严重哮喘的急性和致命的呼吸道事件有关,但我们已经 最近发现慢性粘液阻塞在哮喘患者中很常见,并且是机械性的。 与气流受损和病情恶化有关。特别是在基线分析中 在哮喘患者的CT肺扫描中,我们发现呼吸道粘液塞高度堵塞。 流行,持续多年,经常发生,没有咳嗽和痰的症状,并且很强烈 与气流阻塞有关。然而,粘液的放射学特征尚不清楚。 堵塞会导致严重的气流阻塞,部分原因是CT上粘液堵塞的详细特征 扫描是非常劳动密集型的,需要训练有素的胸科放射科医生进行评估。在目标1中 在这一应用中,我们建议检验假设,根据我们的初步数据,即三种射线照片 粘液塞子的特征-粘液塞子体积、近端塞子的数量和阻塞的呼吸道树的分数 -所有人都预测气流阻塞会恶化。此外,我们还建议将气道树转换为 一种由电阻元件组成的网络,在该网络中,整个树的有效电阻分别在有无的情况下进行计算 可以确定粘液塞对呼吸道阻力的相对贡献。在目标2中, 我们的目标是通过开发一种新的方法来显著降低CT扫描中粘液堵塞的量化障碍 基于卷积神经网络的粘液塞自动分割算法。我们相信我们的 这些发现将使我们能够识别出一大批慢性重度“粘液高”哮喘患者。 提出新的粘液靶向治疗的可能性,以改善气流和其他疾病结局 患者的子集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Huang其他文献

Brendan Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Huang', 18)}}的其他基金

Quantification and automated characterization of mucus plug pathology in asthmatics
哮喘患者粘液栓病理学的量化和自动表征
  • 批准号:
    10676722
  • 财政年份:
    2022
  • 资助金额:
    $ 7.62万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 7.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了