Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
基本信息
- 批准号:10388466
- 负责人:
- 金额:$ 4.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAmericanAmputationAmputeesAreaArtificial LegBack PainBehaviorBenchmarkingBiologicalCertificationCharacteristicsCommunitiesComputer SystemsComputer softwareData SetDevelopmentDevice SafetyDevice or Instrument DevelopmentDevicesDimensionsEnsureEnvironmentEquipmentExhibitsFailureFeedbackForce of GravityFormulationGaitGoalsHigh Performance ComputingHip region structureHumanIndividualInfrastructureInfusion PumpsInstitutesJointsKneeLegLinkLiteratureLower ExtremityMathematical Model SimulationMathematicsMeasuresMechanicsMedical DeviceMedical Device SafetyMedical centerMentorshipMethodsMichiganMissionModelingMotionMovementMuscleNational Institute of Biomedical Imaging and BioengineeringNational Institute of Child Health and Human DevelopmentOutcomePacemakersPerformancePhasePhysicsProceduresProcessProductionProgram DevelopmentProsthesisPublic HealthQuality of lifeResearchResidual stateRiskRoboticsSafetySideSourceSystemTechniquesTestingThigh structureTorqueTrainingUniversitiesValidationVolitionWalkingWorkankle prosthesisbasecareerclinical applicationcluster computingcomputing resourcesdesignfallshuman subjectimprovedinsightkinematicsmathematical algorithmmeetingsnovelpatient mobilitypowered prosthesisprogramsprosthesis wearerrehabilitation researchsimulationsoundtechnology developmenttime intervaltool
项目摘要
ABSTRACT
Sit-stand transitions, the motions executed by individuals to stand up or sit down, are an important determinant
of overall mobility and a common source of falls. Unilateral amputees using standard passive prostheses are
further challenged by sit-stand transitions due to muscle and joint asymmetries they exhibit between the sound
and amputated sides, often resulting in debilitating back pain. Powered knee-ankle prostheses can produce
enough torque to assist meaningfully during sit-stand transitions and can meet design criteria such as
producing smooth motion on the amputated side that matches the sound side. Controllers for these prostheses
can be designed to allow user-driven control of the leg. However, the production of high torques not directly
commanded by the user comes with increased risks. This is of particular concern because these legs must be
adopted outside of controlled lab environments. Thus, any powered prosthesis must demonstrably meet design
and safety criteria. While safety-critical medical devices, such as pacemakers, are subjected to extensive
testing and validation procedures, there is no agreed-upon standard in the powered prosthetics field for how to
define and measure safety. Prior work on sit-stand controllers has focused only on measuring a limited number
of outcomes with respect to one design criterion on a small number of subjects, providing no guarantees about
safety. The set of techniques known as formal verification provides powerful tools to reason about the behavior
of systems that are composed of interacting mechanical, software, and biological modules. Given a model of a
system, formal verification allows us to probe the system’s behavior over an infinite range of possibilities that
cannot be replicated in the lab during a typical testing session. These methods can then guide real-world
testing, and alert system designers to problematic regions of execution. In this project, I propose to apply
formal verification techniques to design a volitional controller for sit-stand transitions with provable safety
guarantees, using physics-based models and novel mathematical formulations of safety.
The University of Michigan Robotics Institute is one of the top institutes of its kind in the US and provides an
ideal environment and infrastructure for the successful completion of this research. The Robotics Institute gait
lab has all of the necessary equipment needed for powered prosthesis research, including two state-of-the-art
prosthetic legs, and access to advanced computational resources such as the Great Lakes high performance
computing cluster. Drs. Gregg and Ozay have proven expertise relevant to the aims of this project, and will
provide mentorship that will guide my research, my training, and the attainment of my career goals.
抽象的
坐姿过渡,个人执行的动议站起来或坐下,是一个重要的确定者
整体流动性和跌倒的共同来源。使用标准的被动假体的单方面截肢者是
由于肌肉和关节不对称而导致的静坐过渡进一步挑战,它们在声音之间暴露
截肢的侧面,通常导致背痛。有动力的膝盖假肢可以产生
足够的扭矩可以在坐姿过渡期间有意义协助,并且可以符合设计标准,例如
在截肢侧产生平稳的运动,与声音侧匹配。这些假肢的控制者
可以设计以允许用户驱动的腿控制。但是,高扭矩的生产不是直接的
用户指挥的风险增加。这是特别关心的,因为这些腿一定是
在受控实验室环境之外采用。那,任何电力假体都必须明显地符合设计
和安全标准。虽然关键的安全医疗设备(例如太空制造商)受到广泛的影响
测试和验证程序,在有能力的假肢领域中没有达成协议的标准
定义和衡量安全性。先前关于坐姿控制器的工作仅重点是测量有限的数量
关于少数受试者的一个设计标准的结果,没有保证
安全。称为正式验证的一组技术提供了强大的工具来推理行为
由相互作用的机械,软件和生物模块组成的系统。给定一个模型
系统,正式验证使我们能够在无限的可能性范围内探究系统的行为
在典型的测试会话中无法在实验室中复制。这些方法然后可以指导现实世界
测试和警报系统设计人员对执行的问题区域。在这个项目中,我建议申请
正式的验证技术,设计具有可证明安全性的静坐过渡的自愿控制器
保证使用基于物理的模型和新型的安全数学公式。
密歇根大学机器人学院是美国同类领域的顶级研究所之一,并提供了
成功完成这项研究的理想环境和基础设施。机器人学院步态
实验室拥有动力假体研究所需的所有必要设备,包括两个最先进的设备
假肢,并获得高级计算资源,例如大湖高性能
计算集群。博士。 Gregg和Ozay已证明与该项目的目标相关的专业知识,并将
提供指导我的研究,培训和实现我的职业目标的精神训练。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daphna Raquel Raz其他文献
Daphna Raquel Raz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daphna Raquel Raz', 18)}}的其他基金
Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:
10570170 - 财政年份:2022
- 资助金额:
$ 4.06万 - 项目类别:
Supplement: Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
补充:动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
- 批准号:
10785336 - 财政年份:2022
- 资助金额:
$ 4.06万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 4.06万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别: