Leveraging prior knowledge to classify Indeterminate Lung Nodules in CT images using Deep Neural Networks
利用深度神经网络利用先验知识对 CT 图像中的不确定肺结节进行分类
基本信息
- 批准号:10389388
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvisory CommitteesAttentionBenignBiologicalCaliberCancer DetectionCharacteristicsChronicChronic Obstructive Pulmonary DiseaseClassificationClinicalComputer ModelsDataData SetDetectionDiagnosticEarly DiagnosisEnvironmentExcisionFoundationsFutureGoalsGrantGrowthImageIndividualInflammationInflammatory ResponseKnowledgeLeadLearningLungLung noduleMachine LearningMalignant - descriptorMalignant neoplasm of lungMasksMeasuresMedicalMethodologyModalityMorphologyNoduleNon-Small-Cell Lung CarcinomaOutcomePathogenesisPatient-Focused OutcomesPatientsPerformancePrecancerous ConditionsPreventive serviceProceduresPulmonary EmphysemaPulmonary InflammationQuality of lifeRecommendationResearch PersonnelResearch ProposalsRiskRisk FactorsScanningSensitivity and SpecificitySeveritiesSolidSpecific qualifier valueSpecificitySpiculateTissuesTrainingTranslatingUnited StatesWorkX-Ray Computed Tomographybasecareerdeep field surveydeep learningdeep neural networkdiagnostic biomarkerdiagnostic strategyexperimental studyfollow-uphigh riskhigh risk populationidiopathic pulmonary fibrosisimprovedimproved outcomeinnovationknowledge baselearning strategylow dose computed tomographylung cancer screeninglung developmentmachine learning methodmortalityneural networknovelnovel strategiespremalignantscreeningstandard of caretransfer learningtumor
项目摘要
PROJECT SUMMARY
Management, treatment, and diagnostic approaches for non-small cell lung cancer (NSCLC) have evolved in the
last decade from primarily empirical methodologies to objective strategies that rely on clinical characteristics of
the patient and morphological features of the nodule1. Recent recommendations by the United States Preventive
Service Task Force (USPSTF) recommends that high-risk individuals be screened yearly with low-dose
computed tomography (LDCT), as this screening practice provides high sensitivity with acceptable specificity for
lung cancer2. However, the introduction of LDCT as the primary screening modality for lung cancer has increased
the identification of indeterminate nodules. The increased detection rates caused by this screening practice
decreases the overall quality of life for at-risk individuals through repeated follow-up and the frequent need for
invasive procedures for what is likely a benign nodule. In this training grant, we aim to improve upon these
outcomes by improving the performance of deep neural networks (DNNs) in data-scarce domains, specifically
lung cancer. The overall hypothesis of this proposal is that DNN classification accuracy of indeterminate
lung nodules will be significantly improved through the use of pre-specified malignant nodule and
parenchymal morphological features that would not be readily extractable by a DNN directly from the
LDCT scans. We will address this hypothesis and achieve the goals of this proposal by augmenting the National
Lung Screening Trial (NLST) dataset to infer important morphological parenchymal features for malignant nodule
classification and by using ancillary data from the COPDgene dataset. The experiments proposed in Aim 1 will
explore the impact of using augmented morphological parenchymal features on the classification performance
of our deep neural networks. Aim 2 will explore the relative contribution of a contextually similar dataset,
COPDgene, for classification and parameter tuning. The proposed work will yield improved approaches for
classification of indeterminate pulmonary nodules as either malignant or benign via an innovative approach for
training DNNs using domain knowledge and contextually related datasets in data-scarce domains. Ultimately,
the application of these approaches will improve our understanding of those parenchymal morphological features
that are most critical for discriminating pulmonary nodules. In addition, the training grant I will receive in the
course of these studies related to generating CT markers, detecting early lung cancer pathogenesis, and
computational modeling will serve as a solid foundation for my future career as an independent biomedical
investigator.
项目摘要
非小细胞肺癌(NSCLC)的管理、治疗和诊断方法在20世纪已经发展,
在过去的十年里,从主要的经验方法到依赖于临床特征的客观策略,
患者和结节的形态特征1。美国最近的建议
服务工作组(USPSTF)建议,高风险的个人进行筛查,每年低剂量
计算机断层扫描(LDCT),因为这种筛查实践提供了高灵敏度和可接受的特异性,
肺癌2.然而,LDCT作为肺癌的主要筛查方式的引入已经增加,
不确定结节的鉴别。这种筛查做法提高了检出率,
通过重复随访和频繁需要,降低了高危人群的整体生活质量
可能是良性结节的侵入性手术。在这个培训补助金,我们的目标是改善这些
通过提高深度神经网络(DNN)在数据稀缺领域的性能,
肺癌该提案的总体假设是DNN的分类准确性不确定
通过使用预先指定的恶性结节,
实质形态学特征,不容易通过DNN直接从
LDCT扫描。我们将解决这一假设,并通过扩大国家预算来实现这一建议的目标。
肺筛查试验(NLST)数据集,用于推断恶性结节的重要形态实质特征
分类和使用来自COPDgene数据集的辅助数据。目标1中提出的实验将
探索使用增强的形态实质特征对分类性能的影响
我们的深层神经网络。目标2将探索上下文相似数据集的相对贡献,
COPDgene,用于分类和参数调整。拟议的工作将产生改进的方法,
通过一种创新的方法将不确定的肺结节分类为恶性或良性,
使用领域知识和数据稀缺领域中的上下文相关数据集训练DNN。最后,
这些方法的应用将提高我们对这些实质形态学特征的理解
这是鉴别肺结节的关键。此外,我将获得的培训补助金
这些研究涉及产生CT标记物、检测早期肺癌发病机制,
计算建模将作为我未来作为一个独立的生物医学专业的职业生涯的坚实基础。
调查员
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Axel Herve Masquelin其他文献
Axel Herve Masquelin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Axel Herve Masquelin', 18)}}的其他基金
Improving the Generalizability of Deep Neural Networks by Teaching Single Nucleotide Polymorphisms Associated with LDCT Features
通过教授与 LDCT 特征相关的单核苷酸多态性来提高深度神经网络的通用性
- 批准号:
10905205 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Improving the Generalizability of Deep Neural Networks by Teaching them Lung Cancer Pathophysiology
通过教授肺癌病理生理学来提高深度神经网络的通用性
- 批准号:
10529498 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant














{{item.name}}会员




