molecular mechanisms of the blood brain barrier function and regulation
血脑屏障功能与调节的分子机制
基本信息
- 批准号:10390473
- 负责人:
- 金额:$ 100.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAstrocytesBiochemicalBiological ModelsBlood - brain barrier anatomyBlood VesselsBrainBrain NeoplasmsCandidate Disease GeneCell LineCellsCellular biologyCentral Nervous System DiseasesCerebrovascular systemChemicalsControlled EnvironmentDiseaseDrug Delivery SystemsEndocytic VesicleEndothelial CellsEndotheliumEnsureEnvironmentGoalsImageImaging DeviceMental disordersMolecularMultiple SclerosisNerve DegenerationNervous System controlNeuraxisNeurodegenerative DisordersNeurologicNeurologyParkinson DiseasePathologicPathway interactionsPericytesPhysiologicalPositioning AttributeRegulationSignal TransductionStrokeSynaptic TransmissionTherapeuticTherapeutic AgentsTight JunctionsToxinTranslatingWorkblood-brain barrier functionblood-brain barrier permeabilizationbrain endothelial cellexperimental studymouse geneticsnervous system disorderneuroinflammationnovel therapeuticspathogenpublic health relevancesealtooltranscriptometranscytosisvesicle transport
项目摘要
Project Summary/Abstract:
The central nervous system (CNS) requires a tightly controlled environment free of various toxins and
pathogens to provide the proper chemical composition for synaptic transmission. This environment is
maintained by the `blood brain barrier' (BBB), which is composed of highly specialized blood vessels whose
endothelial cells display specialized tight junctions and unusually low rates of transcellular vesicular transport
(transcytosis). In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals
the CNS and controls substance influx and efflux. While BBB breakdown has recently been associated to
initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery
to the CNS. A limited understanding of the molecular mechanisms that control BBB formation has hampered
our ability to manipulate the BBB in disease. Our recent discoveries changed our understanding of what
makes the BBB impermeable. The BBB is formed by a single layer of endothelial cells that lines the walls of
the brain's blood vessels. Historically, the restrictive feature of BBB has been attributed to the specialized tight
junctions between adjacent endothelial cells. However, substances can also cross the endothelial layer by
transcytosis, when material enters endocytic vesicles that are trafficked across the cell. We discovered that
transcytosis is actively inhibited in brain endothelial cells to ensure BBB integrity. Our findings suggest that
molecular pathways inhibiting transcytosis could be targeted to open the BBB for CNS therapeutics.We have
also identified over 200 BBB candidate genes that are enriched in CNS endothelial cells compared to periphery
endothelial cells. I propose to launch major new efforts leading to a major expansion in the scope of our work
in the field of BBB. I will take the next eight years to bring my lab to the next level to (1) identify the full list of
key BBB regulators in CNS endothelial cells, (2) understand what signals from non-endothelial cells maintain
and regulate BBB permeability, and (3) determine how BBB permeability dynamically changes during different
physiological and pathological conditions. We will also begin to work on translating findings from these studies
to therapies. We will use a combination of mouse genetics, imaging, molecular, cell biology, and biochemical
approaches. The experiments described here represent a major expansion in the scope of our work. Achieving
the goals outlined here could have a major impact on neurology, enabling clinicians to open the BBB for
transient delivery of drugs to the CNS, and conversely to close the BBB to slow the progression of
neurodegenerative diseases. Given the transcriptome screens we have recently performed, the model systems
we have devised, and the imaging tools we have recently developed, my lab is in a unique position to reveal
the molecular and cellular mechanisms of the BBB.
项目概要/摘要:
中枢神经系统(CNS)需要一个严格控制的环境,没有各种毒素,
为突触传递提供适当的化学成分。这种环境是
由“血脑屏障”(BBB)维持,血脑屏障由高度特化的血管组成,
内皮细胞显示出特化的紧密连接和异常低的跨细胞囊泡转运率
(转胞吞)。与周细胞和星形胶质细胞一致,这种独特的脑内皮生理屏障密封
中枢神经系统和控制物质流入和流出。虽然BBB崩溃最近与
由于各种神经系统疾病的发生和持续,完整的BBB是药物递送的主要障碍
到CNS。对控制血脑屏障形成的分子机制的有限理解阻碍了
我们在疾病中操纵血脑屏障的能力。我们最近的发现改变了我们对
使得血脑屏障不可渗透。血脑屏障是由单层内皮细胞形成的,
大脑的血管。从历史上看,血脑屏障的限制性特征被归因于特化的紧密性。
相邻内皮细胞之间的连接。然而,物质也可以通过以下方式穿过内皮层
转胞吞作用,当物质进入胞吞囊泡,被运输通过细胞。我们发现
在脑内皮细胞中胞吞转运被主动抑制以确保BBB完整性。我们的发现表明
抑制转胞吞作用的分子途径可以靶向打开BBB用于CNS治疗。
还鉴定了200多个BBB候选基因,与外周血相比,这些基因在CNS内皮细胞中富集
内皮细胞我建议作出重大的新努力,从而大大扩大我们的工作范围
在BBB领域。我将在接下来的八年里把我的实验室提升到一个新的水平:(1)确定
CNS内皮细胞中的关键BBB调节因子,(2)了解来自非内皮细胞的信号维持
和调节BBB通透性,以及(3)确定BBB通透性在不同的过程中如何动态变化,
生理和病理条件。我们也将开始致力于翻译这些研究的结果
到治疗。我们将使用小鼠遗传学、成像、分子、细胞生物学和生物化学的组合,
接近。这里描述的实验代表了我们工作范围的重大扩展。实现
这里概述的目标可能对神经病学产生重大影响,使临床医生能够打开BBB,
药物瞬时递送到CNS,并且相反地关闭BBB以减缓疾病的进展。
神经退行性疾病鉴于我们最近进行的转录组筛选,模型系统
我们已经设计了,我们最近开发的成像工具,我的实验室处于一个独特的位置,可以揭示
BBB的分子和细胞机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHENGHUA GU其他文献
CHENGHUA GU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHENGHUA GU', 18)}}的其他基金
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10214693 - 财政年份:2020
- 资助金额:
$ 100.93万 - 项目类别:
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10627868 - 财政年份:2020
- 资助金额:
$ 100.93万 - 项目类别:
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10437645 - 财政年份:2020
- 资助金额:
$ 100.93万 - 项目类别:
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10029031 - 财政年份:2020
- 资助金额:
$ 100.93万 - 项目类别:
Molecular Mechanisms of the Blood Brain Barrier Function and Regulation
血脑屏障功能与调节的分子机制
- 批准号:
10611869 - 财政年份:2020
- 资助金额:
$ 100.93万 - 项目类别:
New tools for understanding the blood brain barrier
了解血脑屏障的新工具
- 批准号:
8754153 - 财政年份:2014
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8214575 - 财政年份:2010
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8608011 - 财政年份:2010
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8416391 - 财政年份:2010
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
7889010 - 财政年份:2010
- 资助金额:
$ 100.93万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 100.93万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 100.93万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 100.93万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 100.93万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 100.93万 - 项目类别: