Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
基本信息
- 批准号:10627868
- 负责人:
- 金额:$ 56.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationArteriesAstrocytesBehaviorBiological AssayBlood - brain barrier anatomyBlood VesselsBlood capillariesBlood flowBrainBrain imagingBrain regionCapillary Endothelial CellCardiac OutputCardiovascular systemCaveolaeCell physiologyCellsCellular AssayCentral Nervous System DiseasesCerebrovascular DisordersCerebrovascular systemCommunicationConnexinsCouplingCuesDataData AnalysesDatabasesDevelopmentDiagnosisDiameterDiseaseElectrophysiology (science)Endothelial CellsEndotheliumFamily memberFunctional Magnetic Resonance ImagingGap JunctionsHumanImageImage AnalysisImaging TechniquesImpairmentIon ChannelKnowledgeLearningMeasuresMediatingMembraneMicroscopeModelingMolecularMusMutant Strains MiceNOS3 geneNerve DegenerationNeurodegenerative DisordersNeuronsOrganPathway interactionsPeripheralPhysiologicalPlayPopulationPreventionProcessRelaxationResolutionRoleSignal TransductionSignaling MoleculeSliceSmooth Muscle MyocytesStimulusSubcellular structureSymptomsTechniquesTestingTracerTreesVascular DementiaVascular blood supplyVasodilationVibrissaeVisualizationWorkarterioleawakebarrel cortexbrain endothelial cellcalcium indicatorcell typecerebrovascular biologygenetic approachimaging geneticsimprovedin vivoin vivo imagingin vivo two-photon imagingmillisecondmouse geneticsnervous system disorderneuralneurotransmissionneurovascularneurovascular couplingpatch clamppublic health relevancerecruitresponsescaffoldspatiotemporaltemporal measurementtooltransmission processtwo-photon
项目摘要
Project Summary/abstract:
There is no organ in the body that more heavily depends on a continuous supply of blood than the brain. The
importance of the circulatory system to the brain is demonstrated by the fact that the brain makes up 2% of
total body mass but it receives 20% of cardiac output. Furthermore, the brain does not contain local fuel
reserves, as peripheral organs do. During behavior, brain regions are recruited for specific tasks and must be
brought “online” quickly. The brain regulates its own blood supply via a process called neurovascular coupling,
in which neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain
energy demand. Impairments in neurovascular coupling contributes to neurodegeneration and vascular
dementia. Neurovascular coupling is also the basis for functional brain imaging, which is currently the only way
to infer brain-wide neuronal activation in humans. Despite the importance of understanding how the brain
regulates its own blood supply, the molecular and cellular mechanisms underlying neurovascular coupling are
still not clear. In this proposal, we have developed a two-photon in vivo imaging paradigm that can
simultaneously measure neural activity (via a genetically encoded calcium indicator) and vascular dynamics
(vessel diameter and blood flow) at single-vessel resolution in awake mice, enabling us to capture the
neurovascular response to a natural stimulus (whisker stimulation) at high temporal and spatial resolution in
vivo. We will combine this state-of-art in vivo imaging techniques with powerful molecular, electrophysiological,
ultrastructural, and genetic approaches to elucidate the fundamental cellular mechanisms governing
neurovascular coupling. Our preliminary data with in vivo live imaging and mouse genetics in the barrel cortex,
suggest that endothelial cells (ECs) in the brain play active roles in neurovascular coupling. Traditionally, ECs
were considered to be passively involved in neurovascular coupling, and to be a homogenous population. We
found aECs and cECs display molecular and subcellular differences, and play distinct roles during
neurovascular coupling. Our proposed work will identify the cellular, subcellular, and molecular mechanisms
by which endothelial cells from different segments of the vascular tree initiate, transmit, and implement
neurovascular coupling. Specifically, we will demonstrate how different type of ECs along the vascular tree
mediate neurovascular coupling, thus connecting the dots between neural activity and local blood flow change.
We expect that our ability to image CNS small blood vessels non-invasively in awake mice with high spatial
and temporal resolution, along with other sophisticated techniques, will allow us to identify critical molecular
and subcellular mechanisms that underlie neurovascular coupling in vivo. Moreover, our structural and
molecular findings will provide tools that can be broadly used by the field to cerebrovascular biology. Finally,
the data will provide critical information to accelerate our understanding and treatment of CNS diseases related
to small vessels and vascular dementia.
项目摘要/摘要:
人体内没有一个器官比大脑更严重地依赖血液的持续供应。这个
循环系统对大脑的重要性由大脑占2%的事实得到证明
身体总质量,但它接受20%的心输出量。此外,大脑不含局部燃料。
储备,就像外围器官一样。在行为过程中,大脑区域被招募用于特定的任务,并且必须
迅速“上线”。大脑通过一种称为神经血管耦合的过程来调节自己的血液供应,
在这种情况下,神经活动迅速增加局部血流量,以满足局部大脑的时刻变化
能源需求。神经血管偶联障碍导致神经退行性变和血管
痴呆症。神经血管耦合也是脑功能成像的基础,这是目前唯一的方法
来推断人类全脑神经元的激活。尽管了解大脑是如何
调节自身的血液供应,神经血管偶联的分子和细胞机制是
仍然不清楚。在这个提议中,我们开发了一种双光子活体成像范例,它可以
同时测量神经活动(通过基因编码的钙指示器)和血管动力学
(血管直径和血流量)在清醒小鼠的单血管分辨率下,使我们能够捕捉到
神经血管对自然刺激(胡须刺激)的高时间和空间分辨率反应
活着。我们将把这种最先进的活体成像技术与强大的分子、电生理、
用超微结构和遗传学的方法来阐明
神经血管偶联。我们的活体成像和小鼠桶状皮质遗传学的初步数据,
提示脑内皮细胞(ECs)在神经血管偶联中发挥积极作用。传统上,欧洲共同体
被认为是被动地参与神经血管偶联,是一个同质的群体。我们
发现AECs和CECs表现出分子和亚细胞的差异,并在
神经血管偶联。我们提议的工作将确定细胞、亚细胞和分子机制。
血管树不同节段的内皮细胞通过其启动、传递和执行
神经血管偶联。具体地说,我们将演示血管树上不同类型的内皮细胞是如何
调节神经血管偶联,从而连接神经活动和局部血流变化之间的点。
我们希望我们能够在清醒的高空间小鼠身上无创地对中枢小血管进行成像
时间分辨率,以及其他复杂的技术,将使我们能够识别关键的分子
以及体内神经血管偶联的亚细胞机制。此外,我们的结构和
分子发现将为脑血管生物学领域提供可广泛使用的工具。最后,
这些数据将为我们加速了解和治疗与中枢神经系统相关的疾病提供关键信息
小血管和血管性痴呆。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System.
- DOI:10.1038/s44161-022-00046-4
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Krolak, Trevor;Chan, Ken Y;Kaplan, Luke;Huang, Qin;Wu, Jason;Zheng, Qingxia;Kozareva, Velina;Beddow, Thomas;Tobey, Isabelle G;Pacouret, Simon;Chen, Albert T;Chan, Yujia A;Ryvkin, Daniel;Gu, Chenghua;Deverman, Benjamin E
- 通讯作者:Deverman, Benjamin E
Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier.
- DOI:10.1016/j.neuron.2022.02.017
- 发表时间:2022-05-18
- 期刊:
- 影响因子:16.2
- 作者:Ayloo, Swathi;Lazo, Christopher Gallego;Sun, Shenghuan;Zhang, Wei;Cui, Bianxiao;Gu, Chenghua
- 通讯作者:Gu, Chenghua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHENGHUA GU其他文献
CHENGHUA GU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHENGHUA GU', 18)}}的其他基金
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10214693 - 财政年份:2020
- 资助金额:
$ 56.51万 - 项目类别:
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10437645 - 财政年份:2020
- 资助金额:
$ 56.51万 - 项目类别:
molecular mechanisms of the blood brain barrier function and regulation
血脑屏障功能与调节的分子机制
- 批准号:
10390473 - 财政年份:2020
- 资助金额:
$ 56.51万 - 项目类别:
Molecular Mechanisms of the Blood Brain Barrier Function and Regulation
血脑屏障功能与调节的分子机制
- 批准号:
10611869 - 财政年份:2020
- 资助金额:
$ 56.51万 - 项目类别:
Neuronal and vascular interactions in the CNS
中枢神经系统中神经元和血管的相互作用
- 批准号:
10029031 - 财政年份:2020
- 资助金额:
$ 56.51万 - 项目类别:
New tools for understanding the blood brain barrier
了解血脑屏障的新工具
- 批准号:
8754153 - 财政年份:2014
- 资助金额:
$ 56.51万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8214575 - 财政年份:2010
- 资助金额:
$ 56.51万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8608011 - 财政年份:2010
- 资助金额:
$ 56.51万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
8416391 - 财政年份:2010
- 资助金额:
$ 56.51万 - 项目类别:
The Role of Semaphorins in Axon and Blood Vessel Guidance
信号蛋白在轴突和血管引导中的作用
- 批准号:
7889010 - 财政年份:2010
- 资助金额:
$ 56.51万 - 项目类别:
相似海外基金
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
- 批准号:
22KJ2601 - 财政年份:2023
- 资助金额:
$ 56.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular identification of the oxygen sensor(s) in the fetal ductus arteriosus and pulmonary artery: an integrated multiomic comparison of mitochondria in vital fetal arteries with opposing oxygen responses
胎儿动脉导管和肺动脉中氧传感器的分子识别:对胎儿重要动脉中具有相反氧反应的线粒体进行综合多组学比较
- 批准号:
462691 - 财政年份:2022
- 资助金额:
$ 56.51万 - 项目类别:
Operating Grants
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2022
- 资助金额:
$ 56.51万 - 项目类别:
Discovery Grants Program - Individual
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10337722 - 财政年份:2022
- 资助金额:
$ 56.51万 - 项目类别:
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10590708 - 财政年份:2022
- 资助金额:
$ 56.51万 - 项目类别:
Pregnenolone constricts cerebral vascular arteries through the direct modulation of BK ion channels
孕烯醇酮通过直接调节 BK 离子通道收缩脑血管动脉
- 批准号:
10441131 - 财政年份:2021
- 资助金额:
$ 56.51万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
DGECR-2021-00028 - 财政年份:2021
- 资助金额:
$ 56.51万 - 项目类别:
Discovery Launch Supplement
Association of brain temperature increase and cerebrospinal fluid dynamics in chronic brain ischemia due to main trunk occlusion of cerebral arteries
脑动脉主干闭塞所致慢性脑缺血脑温度升高与脑脊液动力学的关系
- 批准号:
21K09108 - 财政年份:2021
- 资助金额:
$ 56.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10195510 - 财政年份:2021
- 资助金额:
$ 56.51万 - 项目类别:
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10405492 - 财政年份:2021
- 资助金额:
$ 56.51万 - 项目类别: