Genetic and extrinsic mechanisms governing early enteric nervous system development
控制早期肠神经系统发育的遗传和外在机制
基本信息
- 批准号:10211417
- 负责人:
- 金额:$ 40.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-27 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgreementAnteriorBiological AssayBiological ModelsCandidate Disease GeneCell CycleCellsChagas DiseaseChromosome MappingColonColonic AganglionosisComplexComputer ModelsCongenital MegacolonConstipationCoupledDataData SetDefectDestinationsDevelopmentDistalEmbryoEmbryonic DevelopmentEnsureEnteralEnteric Nervous SystemEnvironmentEquilibriumEsophageal achalasiaEventEyeFoundationsFutureGangliaGastrointestinal tract structureGene ExpressionGene Expression ProfileGenesGeneticGenetic TranscriptionGenomicsGoalsHindgutHomeostasisHormone secretionHumanImmunoglobulin Variable RegionIn SituIntestinal MotilityIntestinal ObstructionKnowledgeLeadLengthLightMammalsMapsMitosisMitoticModelingMolecularMuscleNervous System controlNeurogliaNeuronsOpticsPathway interactionsPatternPeristalsisPlayPopulationPositioning AttributeProcessRegulator GenesResearchResearch ProposalsResolutionRoleSeriesSignal PathwaySignal TransductionSpeedSystemTestingTherapeutic StudiesTimeTissue EngineeringTissuesTretinoinTubeWaterZebrafishbasecell fate specificationconfocal imagingeffective therapyenteric neuropathyexperimental studygastrointestinalgenetic signaturegut colonizationin uteroin vivoin vivo imaginginnovationintestinal barrierloss of functionmigrationnerve stem cellnervous system developmentnervous system disorderneurodevelopmentneurogenesisneuron developmentnovel therapeuticsoptogeneticsprogramsrelating to nervous systemspatiotemporalstem cellstranscription factortranscriptomics
项目摘要
Resident between the muscle walls of the entire gastrointestinal (GI) tract, the enteric nervous system
(ENS) consists of a series of interconnected neurons and glia, numbered in the hundreds of millions. The
ENS controls essential gut functions, such as peristalsis, water balance and intestinal barrier homeostasis.
The ENS is derived from enteric neural progenitors (ENPs) that migrate into the developing gut tube during
embryogenesis and differentiate into enteric neurons or glia. Disruption in ENS formation results in the
congenital condition Hirschsprung disease (HSCR), in which variable regions of the GI lack ENS—the most
common form of HSCR presents along the distal colon, also known as colonic aganglionosis. The
underlying cellular mechanisms that ENPs utilize to migrate into and spatially position along the gut tube,
as well as genetic programs they execute to differentiate into enteric neurons have not been well studied
in vivo, therefore limiting our knowledge of how the ENS manifests. The overall goal is to expand
foundational knowledge of the genes utilized to execute the complex mechanisms necessary for ENS
formation, with an eye for informing downstream translational therapeutic studies. In this proposal, we
utilize zebrafish embryos due to their genetic conservation with humans, the ease of viewing their external
development and for their optical transparency. Building off of single-cell transcriptomic data sets generated
from ENP cells collected during their early neurogenesis along the gut tube, Aim 1 will examine a
hypothesis that the spatial arrangement of newly uncovered ENP transcriptional subpopulations predict
future enteric neuron placement and terminal differentiation along the gut tube. In agreement with and
extending observations in mammalian models, we have recently discovered that Retinoic Acid (RA)
signaling is critical globally during early steps of zebrafish ENS development; however, how RA signaling
autonomously influences ENS ontogenesis in vivo is not well understood in any system to date. Aim 2 will
investigate a hypothesis that the RA pathway autonomously controls ENP differentiation states and
migration patterns along the gut tube using cutting edge single-cell transcriptomics, optogenetics and in
vivo imaging. We will also test a mechanistic model in Aim 2 that candidate transcription factors function
intrinsically downstream of RA in ENPs to govern ENS formation, thereby expanding our understanding of
the ENS gene regulatory network. Aim 3 will use genetic modulation of the cell cycle, quantitative in vivo
imaging and cell tracking test a cellular mechanistic model that ENPs couple proliferation with migration to
dictate proper enteric neuron patterning in the gut downstream of the RA pathway. The results of these
aims will significantly increase our knowledge of the genetic, molecular and cellular underpinnings of ENP
development and early ENS creation and they will provide a new mechanistic framework for studying these
developmentally important cells in vivo.
驻留在整个胃肠道 (GI) 的肌壁之间,即肠神经系统
(ENS)由一系列相互连接的神经元和神经胶质细胞组成,数量达数亿。这
ENS 控制着重要的肠道功能,例如蠕动、水平衡和肠道屏障稳态。
ENS 源自肠神经祖细胞 (ENP),它们在发育过程中迁移到发育中的肠管中。
胚胎发生并分化为肠神经元或神经胶质细胞。 ENS 形成的破坏导致
先天性先天性先天性巨结肠症 (HSCR),其中胃肠道的可变区域缺乏 ENS——这是最常见的
HSCR 的常见形式沿远端结肠出现,也称为结肠神经节缺失症。这
ENPs 利用其迁移到肠管并沿肠管进行空间定位的潜在细胞机制,
以及它们执行分化为肠神经元的遗传程序尚未得到充分研究
体内,因此限制了我们对 ENS 如何表现的了解。总体目标是扩大
用于执行 ENS 所需的复杂机制的基因的基础知识
形成,着眼于为下游转化治疗研究提供信息。在这个提案中,我们
利用斑马鱼胚胎,因为它们与人类的遗传保守性,易于观察其外部
开发及其光学透明度。构建生成的单细胞转录组数据集
从沿着肠管的早期神经发生过程中收集的 ENP 细胞中,目标 1 将检查
新发现的 ENP 转录亚群的空间排列预测的假设
未来肠神经元沿肠管的放置和终末分化。同意并
扩展对哺乳动物模型的观察,我们最近发现视黄酸 (RA)
在斑马鱼 ENS 发育的早期阶段,信号传导在全球范围内至关重要;然而,RA信号如何
迄今为止,在任何系统中,对 ENS 体内个体发生的自主影响尚未得到充分了解。目标2将
研究 RA 通路自主控制 ENP 分化状态的假设,
使用尖端的单细胞转录组学、光遗传学和在肠管中的迁移模式
体内成像。我们还将在目标 2 中测试候选转录因子发挥作用的机制模型
ENP 中 RA 的本质下游,控制 ENS 的形成,从而扩大了我们对
ENS 基因调控网络。目标 3 将利用细胞周期的遗传调节,进行体内定量
成像和细胞追踪测试了 ENP 将增殖与迁移结合起来的细胞机制模型
决定了 RA 通路下游肠道中正确的肠神经元模式。这些结果
目标将显着增加我们对 ENP 的遗传、分子和细胞基础的了解
ENS 的开发和早期创建,它们将为研究这些提供一个新的机制框架
体内发育重要的细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rosa A Uribe其他文献
Rosa A Uribe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rosa A Uribe', 18)}}的其他基金
Genetic and extrinsic mechanisms governing early enteric nervous system development
控制早期肠神经系统发育的遗传和外在机制
- 批准号:
10581603 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
Genetic and extrinsic mechanisms governing early enteric nervous system development
控制早期肠神经系统发育的遗传和外在机制
- 批准号:
10378662 - 财政年份:2021
- 资助金额:
$ 40.77万 - 项目类别:
Functional analysis of early vagal neural crest and ENS development
早期迷走神经嵴和 ENS 发育的功能分析
- 批准号:
9113056 - 财政年份:2014
- 资助金额:
$ 40.77万 - 项目类别:
Functional analysis of early vagal neural crest and ENS development
早期迷走神经嵴和 ENS 发育的功能分析
- 批准号:
8921070 - 财政年份:2014
- 资助金额:
$ 40.77万 - 项目类别:
The In Vivo Function of Id2 in Retinal Proliferation and Differentiation
Id2在视网膜增殖和分化中的体内功能
- 批准号:
8120690 - 财政年份:2008
- 资助金额:
$ 40.77万 - 项目类别:
The In Vivo Function of Id2 in Retinal Proliferation and Differentiation
Id2在视网膜增殖和分化中的体内功能
- 批准号:
7673715 - 财政年份:2008
- 资助金额:
$ 40.77万 - 项目类别:
The In Vivo Function of Id2 in Retinal Proliferation and Differentiation
Id2在视网膜增殖和分化中的体内功能
- 批准号:
7903893 - 财政年份:2008
- 资助金额:
$ 40.77万 - 项目类别:
The In Vivo Function of Id2 in Retinal Proliferation and Differentiation
Id2在视网膜增殖和分化中的体内功能
- 批准号:
7546443 - 财政年份:2008
- 资助金额:
$ 40.77万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 40.77万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 40.77万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 40.77万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 40.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




