Tolerance and resistance responses of African bats to viral antigens: Immunological tradeoffs in zoonotic reservoir hosts.

非洲蝙蝠对病毒抗原的耐受性和抗性反应:人畜共患病储存宿主的免疫学权衡。

基本信息

  • 批准号:
    10210766
  • 负责人:
  • 金额:
    $ 61.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

ABSTRACT This project focuses on understanding the role that the unique physiology of bats plays in their ability to act as host reservoirs for diseases that can spill over to humans. The project will be carried out under field conditions in Uganda on three species of bats that have varying links to the spread of Ebola virus (EBOV) to humans. By comparing the ability of these three species of bats to respond to Ebola-like immune challenges, this work will help identify the characteristics that contribute to spillover risk. In the long term, this work will help identify host species for EBOV and other related viruses that present risk to humans. It will also help explain how different species of bats respond to different types of viral infections. The main focus of this project will be to identify behaviors and molecular pathways that enable reservoir hosts to tolerate infections, providing critical insight into one of the mechanisms that leads to spillover. This work is driven by the hypothesis that some bat species have coevolved with particular types of viral infections and, therefore, have adapted mechanisms to minimize pathology during infection. Bats are globally biodiverse and have many unique ecological and physiological adaptations, including flight and the ability to employ both hypo- and hyperthermic body temperature regulation. This project focuses on three bat species chosen because they are in close contact with humans, their habitats cover the range of EBOV exposure risk, and they have divergent coevolutionary histories with viral pathogens; two of the three species have significant ties to EBOV epidemiology. This project addresses these questions under natural conditions in the field by taking the innovative approach of using EBOV virus-like particles as a proxy for experimental infection with biohazardous pathogens. This project has three specific aims that will allow the achievement of its goals. First, the project tests the hypothesis that specific African bat species will display signatures of EBOV disease tolerance in response to challenge with EBOV virus-like particles, and thus are likely to be natural reservoir hosts. These experiments will provide significant insight into disease tolerance in bats and the potential identity of EBOV reservoir(s). Second, this project tests the hypothesis that bats display variable levels of disease tolerance that depend upon innate immune pathways that have undergone unique evolutionary selection in bats. Third, this project explores whether tolerance of and resistance to viral infection are facilitated by the unique metabolic behaviors of bats, namely that they can depress metabolism and enter torpor to conserve energy and can elevate metabolism and thus temperature during flight. The role of changes in body temperature is poorly understood and these experiments will identify whether these physiological responses contribute to immunological tolerance and resistance in important disease reservoirs. Together, the successful completion of these goals will help determine whether infection tolerance confers on African bat species the ability to serve as reservoir hosts for virulent zoonotic viruses and will identify molecular, physiological, and behavioral mechanisms that contribute to tolerance phenotypes.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth A Field其他文献

Kenneth A Field的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth A Field', 18)}}的其他基金

Tolerance and resistance responses of African bats to viral antigens: Immunological tradeoffs in zoonotic reservoir hosts.
非洲蝙蝠对病毒抗原的耐受性和抗性反应:人畜共患宿主宿主的免疫学权衡。
  • 批准号:
    10571935
  • 财政年份:
    2021
  • 资助金额:
    $ 61.14万
  • 项目类别:
Tolerance and resistance responses of African bats to viral antigens: Immunological tradeoffs in zoonotic reservoir hosts.
非洲蝙蝠对病毒抗原的耐受性和抗性反应:人畜共患宿主宿主的免疫学权衡。
  • 批准号:
    10360547
  • 财政年份:
    2021
  • 资助金额:
    $ 61.14万
  • 项目类别:
Transcriptomics of immunity and disease in African Fruit Bats- important zoonotic reservoirs
非洲果蝠——重要的人畜共患病宿主的免疫和疾病的转录组学
  • 批准号:
    9243490
  • 财政年份:
    2017
  • 资助金额:
    $ 61.14万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了