Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
基本信息
- 批准号:10211722
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdultAffectAllelesAlzheimer&aposs DiseaseAutopsyAxonBehaviorBehavioralBindingBiological AssayBiomechanicsBrainBrain ConcussionBrain regionCalmodulinCalmodulin-Binding ProteinsCoculture TechniquesCognitiveCollaborationsConfocal MicroscopyCorpus CallosumCryo-electron tomographyDemyelinationsDevelopmentDiffuse Axonal InjuryElectron MicroscopyElectrophysiology (science)EngineeringFundingHeterogeneityImageImaging TechniquesInjuryInterneuronsKnock-outKnockout MiceLabelLinkLiquid substanceLocationMAPT geneMechanical StressMechanicsMediatingMethodsMicrotubule StabilizationMicrotubule-Associated ProteinsMicrotubulesModelingMorphologyMultiple SclerosisMusMyelinNeuraxisNeuronsOligodendrogliaOutcomePathologicProcessPropertyProteinsProteomicsRattusRecoveryRegulationReportingResearchRiskRoleRotationSignal PathwaySmall Interfering RNAStressStructureSwellingSynapsesSynaptic TransmissionTestingTissuesTransmission Electron MicroscopyVaricosityVirusaxon injurybasebehavior testbehavioral impairmentcell typechronic traumatic encephalopathyhead impactin vivoinsightinterdisciplinary approachknock-downmild traumatic brain injurymouse modelnervous system disordernew therapeutic targetnoveloverexpressionpolypeptideprotein expression
项目摘要
PROJECT SUMMARY
Little is known about the role of micromechanical stress in regulating morphology and function of
neurons in the central nervous system (CNS). Axonal varicosities (swelling or beading) are enlarged,
heterogeneous structures along axonal shafts, profoundly affecting axonal conduction and synaptic
transmission. They are a key pathological feature believed to represent slow accumulation of axonal damage
that occurs during irreversible degeneration, for example in mild traumatic brain injury (mTBI), Alzheimer’s
disease (AD), and multiple sclerosis. In the first funding period of this R01, we discovered that fluid mechanical
stress immediately and reversibly induced varicosities in unmyelinated axons of cultured CNS neurons, and we
further visualized varicosity induction in vivo. Most brain regions including the corpus callosum in healthy adults
contain both myelinated and unmyelinated axons, while myelin appears to protect the axon from initial
mechanical injury. Using a mouse model mimicking concussion, our new studies have found immediate
varicosity formation in unmyelinated axons of cortical neurons and delayed demyelination in the cortex after
mechanical impact. Our new results have also indicated that microtubule (MT)-associated protein 6 (MAP6)
regulates axonal varicosity formation through its properties of MT stabilization and Ca2+/calmodulin binding.
Based on our new findings, we hypothesize that mechanical impact immediately induces varicosity
formation in unmyelinated axons, which is restrained by MAP6-mediated MT stabilization and
subsequently promotes adjacent demyelination that increases axon vulnerability to second impact,
leading to a vicious cycle in repeated mTBI and hence worsened behavioral impairment. To test this
original hypothesis, we will use a multidisciplinary approach including mTBI and demyelination mouse models,
cell-type-specific overexpression, knockout and rescue, confocal and electron microscopy, behavioral testing,
electrophysiological recording, a versatile biomechanical assay, myelin coculture and state-of-the-art imaging
techniques. We will determine (Aim 1) whether mTBI-induced axonal varicosity formation and behavioral
impairment can be aggravated by MAP6 deletion and ameliorated by MAP6-mediated MT stabilization, (Aim 2)
how MAP6 regulates axonal varicosity initiation, recovery, location, heterogeneity and long-term fate through
distinct signaling pathways in partially myelinated axons, and (Aim 3) how MAP6 regulates oligodendrocyte
mechanosensation, and whether preexisting demyelination and/or preexisting axonal varicosities increase the
risk of injury from repeated mechanical impact. This project represents an underexplored research field with
many open questions. This research is significant because it will provide novel mechanistic insights into central
neuron mechanosensation and mTBI primary injury.
项目概要
关于微机械应力在调节形态和功能中的作用知之甚少。
中枢神经系统(CNS)中的神经元。轴突静脉曲张(肿胀或串珠)增大,
沿轴突轴的异质结构,深刻影响轴突传导和突触
传播。它们是一个关键的病理特征,被认为代表轴突损伤的缓慢积累
发生在不可逆转的退化过程中,例如轻度创伤性脑损伤 (mTBI)、阿尔茨海默病
疾病(AD)和多发性硬化症。在这个 R01 的第一个资助期,我们发现流体机械
应激立即且可逆地诱导培养的中枢神经系统神经元的无髓鞘轴突中的静脉曲张,并且我们
进一步可视化体内静脉曲张诱导。健康成年人的大多数大脑区域,包括胼胝体
包含有髓鞘和无髓鞘轴突,而髓磷脂似乎可以保护轴突免受初始影响
机械损伤。使用模拟脑震荡的小鼠模型,我们的新研究发现立即
皮质神经元无髓鞘轴突的静脉曲张形成和皮质延迟脱髓鞘
机械冲击。我们的新结果还表明微管 (MT) 相关蛋白 6 (MAP6)
通过其 MT 稳定和 Ca2+/钙调蛋白结合的特性调节轴突静脉曲张的形成。
根据我们的新发现,我们假设机械冲击立即引起静脉曲张
无髓鞘轴突的形成受到 MAP6 介导的 MT 稳定的抑制
随后促进邻近的脱髓鞘,增加轴突对第二次冲击的脆弱性,
导致反复 mTBI 的恶性循环,从而加剧行为障碍。为了测试这个
最初的假设,我们将使用多学科方法,包括 mTBI 和脱髓鞘小鼠模型,
细胞类型特异性过度表达、敲除和拯救、共聚焦和电子显微镜、行为测试、
电生理记录、多功能生物力学测定、髓磷脂共培养和最先进的成像
技术。我们将确定(目标 1)mTBI 是否诱导轴突静脉曲张形成和行为
MAP6 缺失可能会加剧损伤,而 MAP6 介导的 MT 稳定可以改善损伤(目标 2)
MAP6 如何通过调节轴突静脉曲张的起始、恢复、位置、异质性和长期命运
部分髓鞘轴突中不同的信号通路,以及(目标 3)MAP6 如何调节少突胶质细胞
机械感觉,以及先前存在的脱髓鞘和/或先前存在的轴突静脉曲张是否会增加
反复机械撞击造成伤害的风险。该项目代表了一个尚未充分探索的研究领域
许多悬而未决的问题。这项研究意义重大,因为它将为中枢神经系统提供新颖的机制见解。
神经元机械感觉和 mTBI 原发性损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHEN GU其他文献
CHEN GU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHEN GU', 18)}}的其他基金
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10599871 - 财政年份:2016
- 资助金额:
$ 38.23万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10362748 - 财政年份:2016
- 资助金额:
$ 38.23万 - 项目类别:
Polarized Initiation of Varicosity Formation in Central Neuron Mechanosensation
中枢神经元机械感觉中静脉曲张形成的极化起始
- 批准号:
9177341 - 财政年份:2016
- 资助金额:
$ 38.23万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




