Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
基本信息
- 批准号:10211210
- 负责人:
- 金额:$ 60.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimalsAreaAutomobile DrivingBiologicalBrainBrain DiseasesBrain regionCalciumCause of DeathCell CountCharacteristicsCholesterolClinical ResearchCorpus striatum structureDataEventFemaleFrequenciesFunctional Magnetic Resonance ImagingFutureG Protein-Coupled Receptor SignalingGenesGoalsGrantHigh-Throughput RNA SequencingImageImaging TechniquesIndividualInfarctionInterventionLocationMapsMedicalMetabolismMicroscopeMolecularMolecular ProfilingMolecular TargetMotor CortexMusNeuronsParvalbuminsPathway interactionsPopulationRecoveryRecovery of FunctionReportingResolutionRoleSex DifferencesSiteSomatosensory CortexStainsStrokeTechniquesTestingThalamic structureTherapeuticTherapeutic InterventionTimeTranslatingValidationbehavior testbrain remodelingcalmodulin-dependent protein kinase IIcell typecholesterol biosynthesisdesigndisabilityeffective therapyfunctional outcomesimaging systemimprovedinsightmalemultimodalitynervous system disorderneural circuitneuroimagingneuroregulationnew therapeutic targetoptogeneticspartial recoveryportabilitypost strokepromoterrelating to nervous systemsexstroke outcomestroke recoverytooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY
Stroke is the leading cause of death with very limited treatment options. This devastating neurological disease
is increasingly viewed as a disease of brain connectivity as a damaged stroke area can affect both local and
connected brain regions, causing disruptions in neuronal activity and metabolism network-wide. Recovery of
lost function can occur after stroke and is attributed to brain remodeling in areas adjacent to or connected to
the infarct. In this proposal, we aim to investigate the role of key brain circuits in post-stroke recovery at the
functional, cellular and molecular level, using optogenetics, advanced live imaging and high throughput RNA
sequencing techniques. Previously our lab has demonstrated that selective optogenetic neuronal stimulation in
the ipsilesional motor cortex (iM1) can activate plasticity mechanisms and promote recovery. Recently we have
employed the optogenetic functional MRI technique to systematically map brain-wide changes in neural circuits
after stroke. We have identified key circuits altered by stroke and demonstrated two key circuits restored by
iM1 stimulations. Our map data also revealed two candidate circuits that were not restored by iM1 stimulations,
suggesting that greater recovery could be achieved if we can rescue these circuits by directly stimulating them.
In this proposal we aim to investigate key neural circuits we identified from our activation maps and elucidate
their role in post-stroke recovery. In Aim1 we will use circuit-specific optogenetic tools and functional behavior
tests to interrogate the role of key circuits in post-stroke recovery. This aim will address whether these circuits
have beneficial or maladaptive role during post-stroke recovery. In Aim2 we will examine cellular resolution of
real-time neuronal activity dynamics in key circuits after stroke using a portable live calcium imaging system.
This will elucidate the neural activity dynamics (excitatory and inhibitory) of key circuits at the cellular level,
allowing us to identify the temporal profile and the key neuronal populations altered by stroke, and how iM1
stimulations affect these characteristics to enhance recovery. In Aim3 we will investigate the transcriptome of
key circuit areas using RNAseq, in order to identify key molecular targets and pathways altered by stroke and
by iM1 stimulations. Preliminary RNAseq analysis revealed distinct pathways altered by iM1 stimulations. We
aim to perform RNAseq in multiple regions including iM1 (stimulation site) and ipsilesional thalamus (iM1-
connected region) to elucidate whether similar pathways are involved, and if we can identify a common
molecular signature that drive recovery. We will also perform RNAseq in both sexes in order to ascertain any
sex-specific differences that may be present in post-stroke recovery. Together these results will 1) advance the
understanding of neural circuit dynamics during post-stroke recovery; and 2) identify key neural circuits/cell
types/molecular targets and optimal time window for designing brain stimulation strategies and other
therapeutic interventions in future clinical studies.
项目总结
中风是主要的死亡原因,治疗选择非常有限。这种毁灭性的神经疾病
越来越多地被视为大脑连接的一种疾病,因为中风受损区域会影响到局部和
相互连接的大脑区域,导致整个网络的神经元活动和新陈代谢中断。恢复
功能丧失可在中风后发生,可归因于邻近或连接的区域的大脑重塑
脑梗塞。在这项建议中,我们的目标是研究关键的大脑回路在中风后康复中的作用。
功能、细胞和分子水平,使用光遗传学、先进的实时成像和高通量RNA
测序技术。此前,我们的实验室已经证明,选择性光遗传神经元刺激在脑内
损伤性运动皮质(IM1)可激活可塑性机制,促进康复。最近我们有
利用光遗传功能磁共振技术系统地标测全脑神经回路的变化
中风后。我们已经确定了因击键而改变的按键电路,并演示了由
IM1刺激。我们的MAP数据还显示了两个未被iM1刺激恢复的候选电路,
这表明,如果我们能够通过直接刺激这些电路来拯救它们,可能会实现更大的复苏。
在这项建议中,我们的目标是研究我们从激活图中识别的关键神经回路,并阐明
他们在中风后康复中的作用。在Aim1中,我们将使用特定于电路的光遗传工具和功能行为
测试以询问关键回路在中风后恢复中的作用。这个目标将解决这些电路是否
在卒中后康复过程中起到有益或不良适应的作用。在AIM2中,我们将研究细胞分辨率
使用便携式活体钙成像系统研究中风后关键回路中的实时神经元活动动力学。
这将在细胞水平上阐明关键回路的神经活动动力学(兴奋和抑制),
这使我们能够识别中风后的时间轮廓和关键神经元群体,以及iM1是如何
刺激会影响这些特征,以促进复苏。在Aim3中,我们将研究转录组学
使用RNAseq的关键电路区域,以确定中风和中风后改变的关键分子靶点和通路
通过iM1刺激。初步的RNAseq分析显示,iM1刺激改变了不同的通路。我们
目的在多个区域进行RNAseq,包括iM1(刺激点)和丘脑自身(iM1-
连接区),以阐明是否涉及类似的通路,以及我们是否可以确定共同的
推动复苏的分子签名。我们还将在两性身上进行RNAseq,以确定
中风后康复中可能存在的性别差异。这些结果加在一起将1)推动
了解卒中后康复过程中的神经回路动力学;以及2)识别关键神经回路/细胞
设计脑刺激策略的类型/分子靶点和最佳时间窗口等
未来临床研究中的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY K STEINBERG其他文献
GARY K STEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY K STEINBERG', 18)}}的其他基金
Investigating the pathogenesis of Moyamoya Disease using patient derived induced pluripotent stem cells
使用患者来源的诱导多能干细胞研究烟雾病的发病机制
- 批准号:
10487543 - 财政年份:2021
- 资助金额:
$ 60.44万 - 项目类别:
Investigating the pathogenesis of Moyamoya Disease using patient derived induced pluripotent stem cells
使用患者来源的诱导多能干细胞研究烟雾病的发病机制
- 批准号:
10373587 - 财政年份:2021
- 资助金额:
$ 60.44万 - 项目类别:
Stanford Neuroscience Research Cores for Gene Vectors, Microscopy, and Behaviors
斯坦福大学神经科学研究基因载体、显微镜和行为核心
- 批准号:
9923475 - 财政年份:2019
- 资助金额:
$ 60.44万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
10364739 - 财政年份:2015
- 资助金额:
$ 60.44万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
10530685 - 财政年份:2015
- 资助金额:
$ 60.44万 - 项目类别:
Optogenetic approaches to study post-stroke recovery mechanisms
研究中风后恢复机制的光遗传学方法
- 批准号:
9288239 - 财政年份:2015
- 资助金额:
$ 60.44万 - 项目类别:
Optogenetic Approaches to Functional Recovery After Stroke
中风后功能恢复的光遗传学方法
- 批准号:
8670793 - 财政年份:2013
- 资助金额:
$ 60.44万 - 项目类别:
Meningeal Mast Cells: Key effectors of stroke pathology
脑膜肥大细胞:中风病理学的关键效应器
- 批准号:
8512591 - 财政年份:2013
- 资助金额:
$ 60.44万 - 项目类别:
Optogenetic Approaches to Functional Recovery After Stroke
中风后功能恢复的光遗传学方法
- 批准号:
8492882 - 财政年份:2013
- 资助金额:
$ 60.44万 - 项目类别:
Meningeal Mast Cells: Key effectors of stroke pathology
脑膜肥大细胞:中风病理学的关键效应器
- 批准号:
8623155 - 财政年份:2013
- 资助金额:
$ 60.44万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 60.44万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 60.44万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 60.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 60.44万 - 项目类别:
Studentship














{{item.name}}会员




