A patient-specific computational technique to predict spine injury risks associated with physical activities

一种针对患者的计算技术,用于预测与体力活动相关的脊柱损伤风险

基本信息

  • 批准号:
    10214330
  • 负责人:
  • 金额:
    $ 14.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Vertebral fracture is the most common type of osteoporotic fracture. Spine is also the most common site of bone metastasis, leading to pathologic vertebral fractures. While performing activities of daily living is an essential part of healthy aging, pathologic and non-pathologic vertebral fractures can occur during these activities in metastatic or osteoporotic spines. These fractures cause pain and neurologic manifestations, affecting quality of life. Currently, there is no objective clinical technique that can assess bone fracture risks associated with physical activities. To fill the gap, we propose a patient-specific computational technique to quantitatively evaluate spine injury risks associated with physical activities. This novel approach will enable clinicians to reliably recommend safe and individualized activities to elderly populations. To achieve this, we will obtain motions and muscle activity outcomes from an elderly patient cohort using video motion analysis. These data will be used as input for kinematic motion analyses and mechanical testing on cadaveric lumbar spines, to create and validate our computational models. The rationale for this project is that a QCT/FEA process that can mimic physical activities will be able to reduce vertebral fractures and improve quality of life in elderly patient populations. Our long-term goal is to develop reliable computational techniques to enable earlier injury risk predictions in elderly patients with musculoskeletal diseases. Our overall objective, in this application, is to develop a patient-specific quantitative computed tomography-based finite element analysis (QCT/FEA) method that can assess both kinematic motions and fracture characteristics of the spine, to estimate fracture risks of physical activities. To achieve the overall objective, the following three independent specific aims will be accomplished: 1) to obtain lumbar range of motion and muscle response outcomes in an elderly patient population during five physical movements; 2) to perform kinematic testing on cadaveric spines to measure intradiscal pressures –using a novel approach– during physical movements; and also mechanical testing on spine segments to measure intradiscal pressure at fracture; and 3) to develop and validate QCT/FEA models of the lumbar spine to estimate spine injury risks. This research will lead to the development of a computational tool that can assign a risk score associated with physical activities. Further, this work will provide preliminary data for future R01 grant proposals to predict fracture risks associated with physical movements and exercises in patient populations.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asghar Rezaei其他文献

Asghar Rezaei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Asghar Rezaei', 18)}}的其他基金

A patient-specific computational technique to predict spine injury risks associated with physical activities
一种针对患者的计算技术,用于预测与体力活动相关的脊柱损伤风险
  • 批准号:
    10393017
  • 财政年份:
    2021
  • 资助金额:
    $ 14.65万
  • 项目类别:
A patient-specific computational technique to predict spine injury risks associated with physical activities
一种针对患者的计算技术,用于预测与体力活动相关的脊柱损伤风险
  • 批准号:
    10592260
  • 财政年份:
    2021
  • 资助金额:
    $ 14.65万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了