Defining actin-based mechanisms driving basic cell functions and pathogenic behaviors in Naegleria
定义基于肌动蛋白的机制,驱动耐格里虫的基本细胞功能和致病行为
基本信息
- 批准号:10213600
- 负责人:
- 金额:$ 7.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-25 至 2023-08-24
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAmoeba genusAnimalsAutomobile DrivingBehaviorBiologyBrainCaliberCategory B pathogenCell SurvivalCell divisionCell membraneCell physiologyCellsCellular biologyComplementComplexCore FacilityCytokinesisCytometryCytoskeletonDataDefectDiseaseDrug TargetingEatingEncephalitisEnsureEnvironmentEquilibriumEukaryotaF-ActinFatality rateFlow CytometryFoundationsFutureGene Expression ProfilingGene TargetingGoalsHealthHumanImageImpairmentIndividualInfectionMeasuresMentorshipMicroscopyMicrotubulesMissionMitoticMolecularMyosin ATPaseMyosin Type IINaegleriaNaegleria fowleriNational Institute of Allergy and Infectious DiseaseOrganellesOrganismOsmolar ConcentrationOsmotic PressurePathogenesisPathogenicityPhenotypePlayPopulationPostdoctoral FellowProcessProtein FamilyProteinsPumpResearchResearch PersonnelResearch TrainingResolutionResource DevelopmentResourcesRoleSignal TransductionSolidTestingTrainingTranscriptTranslationsUnited States National Institutes of HealthUniversitiesVacuoleVirulenceWaterWorkbasecareercareer developmentcell motilitycellular imagingchemokinedriving forcemigrationsingle cell analysissmall molecule inhibitorsuccesstherapeutic development
项目摘要
Project Summary
The “brain-eating amoeba” Naegleria fowleri is an NIAID Priority Category B Pathogen that carries a 95% fatality
rate, yet the mechanisms underlying its basic biology and pathogenic behaviors remain largely unstudied.
Because understanding the cell biology of Naegleria is critical to the development of therapeutics, my long-term
goal is to define the cellular and molecular basis of Naegleria pathogenesis. Unlike human cells, from which
Naegleria diverged 1-2 billion years ago, these amoebae do not possess cytoplasmic microtubules. This
suggests that the actin cytoskeleton, assembled by the Arp2/3 complex and formin family proteins, is the primary
driving force for many cellular processes essential to cell survival and pathogenesis. Therefore, my overall
objective in this application is to determine how actin cytoskeletal rearrangements promote cell motility, which is
important for establishing infection, contractile vacuole pumping, which is required for surviving osmotic
pressure, and cell division, which is critical for robust colonization in the brain. To achieve this objective, I
propose the following specific aims: (Aim 1) determine the Arp2/3 complex activators driving cell motility, (Aim 2)
define the formin-based mechanisms governing contractile vacuole dynamics, and (Aim 3) identify the actin
nucleators and molecular mechanisms responsible for cytokinesis. I will address these aims using orthogonal
cellular perturbations (small molecule inhibitors to impair the Arp2/3 complex and formin family proteins, as well
as individual gene targeting using morpholinos) and environmental perturbations by changing external osmotic
pressure. I will measure phenotypes of single cells in detail with microscopy, and complement this by collecting
quantitative data on cell populations with flow cytometry and gene expression assays. Because the cell biology
underlying pathogenesis and basic functions in Naegleria is severely understudied, defining how actin
orchestrates motility, division, and contractile vacuole dynamics is critical for uncovering drug targets to treat
these deadly infections. Completing this project will not only advance the mission of the NIH, but it will also
prepare me for a career as an independent investigator at a research-intensive university studying the cell
biology of Naegleria. The career development resources available to postdocs and the excellent core facility
trainings at UMass create an ideal institutional environment for my training. Further, the mentorship of Dr. Fritz-
Laylin, an expert on Naegleria biology, and Dr. Wadsworth, who specializes in cell division, will ensure the
success of this project as well as my transition to a career as an independent researcher.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrina Velle其他文献
Katrina Velle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrina Velle', 18)}}的其他基金
Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
- 批准号:
10657784 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
- 批准号:
10510010 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 7.04万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 7.04万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 7.04万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




