Defining actin-based mechanisms driving basic cell functions and pathogenic behaviors in Naegleria

定义基于肌动蛋白的机制,驱动耐格里虫的基本细胞功能和致病行为

基本信息

  • 批准号:
    10213600
  • 负责人:
  • 金额:
    $ 7.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-25 至 2023-08-24
  • 项目状态:
    已结题

项目摘要

Project Summary The “brain-eating amoeba” Naegleria fowleri is an NIAID Priority Category B Pathogen that carries a 95% fatality rate, yet the mechanisms underlying its basic biology and pathogenic behaviors remain largely unstudied. Because understanding the cell biology of Naegleria is critical to the development of therapeutics, my long-term goal is to define the cellular and molecular basis of Naegleria pathogenesis. Unlike human cells, from which Naegleria diverged 1-2 billion years ago, these amoebae do not possess cytoplasmic microtubules. This suggests that the actin cytoskeleton, assembled by the Arp2/3 complex and formin family proteins, is the primary driving force for many cellular processes essential to cell survival and pathogenesis. Therefore, my overall objective in this application is to determine how actin cytoskeletal rearrangements promote cell motility, which is important for establishing infection, contractile vacuole pumping, which is required for surviving osmotic pressure, and cell division, which is critical for robust colonization in the brain. To achieve this objective, I propose the following specific aims: (Aim 1) determine the Arp2/3 complex activators driving cell motility, (Aim 2) define the formin-based mechanisms governing contractile vacuole dynamics, and (Aim 3) identify the actin nucleators and molecular mechanisms responsible for cytokinesis. I will address these aims using orthogonal cellular perturbations (small molecule inhibitors to impair the Arp2/3 complex and formin family proteins, as well as individual gene targeting using morpholinos) and environmental perturbations by changing external osmotic pressure. I will measure phenotypes of single cells in detail with microscopy, and complement this by collecting quantitative data on cell populations with flow cytometry and gene expression assays. Because the cell biology underlying pathogenesis and basic functions in Naegleria is severely understudied, defining how actin orchestrates motility, division, and contractile vacuole dynamics is critical for uncovering drug targets to treat these deadly infections. Completing this project will not only advance the mission of the NIH, but it will also prepare me for a career as an independent investigator at a research-intensive university studying the cell biology of Naegleria. The career development resources available to postdocs and the excellent core facility trainings at UMass create an ideal institutional environment for my training. Further, the mentorship of Dr. Fritz- Laylin, an expert on Naegleria biology, and Dr. Wadsworth, who specializes in cell division, will ensure the success of this project as well as my transition to a career as an independent researcher.
项目摘要 “食脑阿米巴”福氏奈格勒杆菌是一种NIAID优先B类病原体,其致死率为95% 然而,其基本生物学和致病行为背后的机制仍未得到很大程度的研究。 因为了解Naegleria的细胞生物学对治疗学的发展至关重要,我的长期 目的是明确Naegleria致病的细胞和分子基础。与人类细胞不同,人类细胞 奈格勒虫在10-20亿年前分化,这些阿米巴虫不具有细胞质微管。这 提示由Arp2/3复合体和Forin家族蛋白组装的肌动蛋白细胞骨架是主要的 许多细胞过程的驱动力,对细胞生存和致病至关重要。因此,我的总体 本应用的目的是确定肌动蛋白细胞骨架重排如何促进细胞运动,这是 对于建立感染很重要,收缩空泡泵送是渗透生存所必需的 压力和细胞分裂,这对大脑中强大的定植至关重要。为达致这个目标,我 提出以下具体目标:(目标1)确定驱动细胞运动的Arp2/3复合激活剂;(目标2) 定义基于福尔马林的控制收缩空泡动力学的机制,并(目标3)确定肌动蛋白 负责胞质分裂的核因子和分子机制。我将使用正交表解决这些目标 细胞扰动(也包括损害Arp2/3复合体和Forin家族蛋白的小分子抑制剂 作为使用吗啡的单个基因靶向)和通过改变外部渗透来进行环境扰动 压力。我将用显微镜详细测量单个细胞的表型,并通过收集 用流式细胞仪和基因表达分析对细胞群体进行定量数据。因为细胞生物学 Naegleria的潜在发病机制和基本功能研究严重不足,定义了肌动蛋白是如何 协调运动、分裂和收缩空泡动力学对发现治疗药物靶点至关重要 这些致命的感染。完成这一项目不仅将推进NIH的使命,而且还将 为我在一所研究密集的大学从事细胞研究的独立调查员的职业生涯做好准备 Naegleria的生物学。为博士后提供的职业发展资源和优秀的核心设施 在马萨诸塞州大学的培训为我的培训创造了理想的制度环境。此外,弗里茨博士的指导- Naegleria生物学专家Laylin和专门研究细胞分裂的Wadsworth博士将确保 这个项目的成功以及我向独立研究人员职业生涯的过渡。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katrina Velle其他文献

Katrina Velle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katrina Velle', 18)}}的其他基金

Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
  • 批准号:
    10657784
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
Defining cytoskeletal mechanisms driving cell motility in Naegleria
定义耐格里虫细胞驱动细胞运动的细胞骨架机制
  • 批准号:
    10510010
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 7.04万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了