Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
基本信息
- 批准号:10213784
- 负责人:
- 金额:$ 29.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnti-Bacterial AgentsAntiparasitic AgentsAreaBacillus subtilisBacteriaBindingBiochemicalChemicalsCyanobacteriumDatabasesDefectDiseaseEnzymesEscherichia coliEscherichia coli K12Eukaryotic CellFamilyFamily memberGenesGeneticGenomic approachGenomicsGoalsHomeostasisHumanLaboratoriesLifeLinkMammalsManuscriptsMetabolicMetabolic PathwayMetabolismMethodsMissionMitochondriaMolecularNervous system structureOperonOrganismOrphanOrthologous GenePathogenesisPathologyPathway interactionsPhosphate-Binding ProteinsPlantsProcessProtein FamilyProteinsPublishingPyridoxal PhosphateReactionRegulationResearchResearch SupportRoleSiteStudy modelsSystems BiologyTestingUnited States National Institutes of HealthVitamin B6VitaminsWorkcofactorcomparative genomicsdifferential expressionhuman diseaseinhibitor/antagonistmembermutantnervous system disorderpathogenic bacteriaresponsestructural genomicstranscriptome sequencingtranscriptomics
项目摘要
One of the major and underappreciated issues of the post-genomic era is that the precise
molecular functions of half of the proteins in databases are not known. Even in Escherichia coli
K12 MG1655 one of the most studied model organism, ~1200 genes are still of unknown (or
erroneous) function. In parallel, open questions remain in metabolic areas that were thought to
be well studied like vitamin synthesis and salvage. For example, vitamin B6 in its active form as
pyridoxal 5'-phosphate (PLP) is a cofactor for over 180 PLP-dependent enzymes that are involved
in many metabolic pathways. PLP is a highly reactive molecule and is both labile and toxic so the
intracellular concentration of PLP not bound to proteins remains low. How PLP is delivered to
target enzymes in these conditions remains a mystery in all organisms. In addition, while the core
E. coli B6 synthesis pathway is well described, the transporter(s) involved in salvage are
unidentified and very little is known about regulation of PLP synthesis/salvage genes. This project
focuses on identifying “missing” players in PLP metabolism in E. coli. In this process, the functions
of several orphan E. coli genes should be solved and, more generally, key conserved players in
PLP homeostasis characterized. Preliminary results published in two manuscripts have shown
that the E. coli YggS protein, a member of the COG0325 as well as its human ortholog PROSC
that has been linked to PLP-dependent diseases are involved in PLP homeostasis. The goal of
Aim 1 is to test the hypothesis that this family could be the “missing” key player in delivering the
PLP cofactor to target enzymes. Aim 2 focuses the response to PLP imbalance by identifying
missing E. coli B6 transporters and characterizing the response to high Pyridoxin levels. The final
exploratory aim will focus on two other orphan PLP binding proteins and an orphan PLP-binding
regulator. The proposed research is significant because in humans, toxic levels of PLP or
deficiency of PLP or defects affecting PLP metabolism are linked to many pathologies, particularly
of the nervous system, hence understanding how PLP is delivered to target enzymes will have
implications for a wide range of human diseases. Also, many enzymes of PLP metabolism have
been recognized as antibacterial and antiparasitic targets, thus understanding PLP homeostasis
is critical to develop successful inhibitors. Finally, this work should characterize 5 genes of
unknown functions in E. coli, a major model organism.
后基因组时代的一个主要和未被充分认识的问题是,
数据库中一半蛋白质的分子功能是未知的。即使在大肠杆菌中
K12 MG 1655是研究最多的模式生物之一,约1200个基因仍是未知的(或
错误)功能。与此同时,代谢领域仍然存在悬而未决的问题,这些问题被认为是
像维生素合成和抢救一样得到充分研究。例如,维生素B6以其活性形式作为
吡哆醛5 '-磷酸(PLP)是超过180种PLP依赖性酶的辅因子,
在许多代谢途径中。PLP是一种高度反应性的分子,既不稳定又有毒,
未与蛋白质结合的PLP的细胞内浓度保持较低。PLP如何交付给
在这些条件下的靶酶在所有生物体中仍然是一个谜。此外,虽然核心
E.大肠杆菌B6合成途径已被充分描述,参与补救的转运蛋白是
PLP合成/补救基因的调控尚未确定,且知之甚少。这个项目
重点是确定在大肠杆菌中PLP代谢中“缺失”的参与者。杆菌在这个过程中,函数
孤儿E.大肠杆菌基因应该得到解决,更普遍的是,关键保守的球员,
PLP稳态特征。发表在两份手稿中的初步结果表明,
该E. coliYggS蛋白,COG 0325的成员以及其人直系同源物PROSC
与PLP依赖性疾病相关的疾病参与PLP体内平衡。的目标
目的1是检验这一假设,即这个家庭可能是在提供
PLP辅因子靶向酶。目标2的重点是通过识别
缺失E. coliB 6转运蛋白,并表征对高吡啶氧还蛋白水平的响应。最终
探索性的目标将集中在其他两个孤儿PLP结合蛋白和孤儿PLP结合蛋白。
调节器拟议的研究是重要的,因为在人类中,PLP或
PLP的缺乏或影响PLP代谢的缺陷与许多病理学有关,特别是
因此,了解PLP是如何传递到靶酶将具有
对人类疾病的广泛影响。此外,PLP代谢的许多酶具有
被认为是抗菌和抗寄生虫的目标,从而了解PLP的稳态
是开发成功抑制剂的关键。最后,这项工作应该表征5个基因,
E.未知函数大肠杆菌,一种主要的模式生物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie A de Crecy-Lagard其他文献
Valerie A de Crecy-Lagard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie A de Crecy-Lagard', 18)}}的其他基金
Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
- 批准号:
9816234 - 财政年份:2019
- 资助金额:
$ 29.87万 - 项目类别:
Pyridoxal 5'-phosphate homeostasis in Escherichia coli
大肠杆菌中吡哆醛 5-磷酸稳态
- 批准号:
10439656 - 财政年份:2019
- 资助金额:
$ 29.87万 - 项目类别:
Emerging Roles of Threonylcarbamoyladenosine in Translation & DNA Maintenance
苏氨酰氨基腺苷在翻译中的新作用
- 批准号:
8236921 - 财政年份:2006
- 资助金额:
$ 29.87万 - 项目类别:
Synthesis and function of Queuosine in Bacteria
细菌中奎奥辛的合成及其功能
- 批准号:
10590640 - 财政年份:2006
- 资助金额:
$ 29.87万 - 项目类别:
Emerging Roles of Threonylcarbamoyladenosine in Translation & DNA Maintenance
苏氨酰氨基腺苷在翻译中的新作用
- 批准号:
8040182 - 财政年份:2006
- 资助金额:
$ 29.87万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 29.87万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 29.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




