Molecular Mechanisms of Copper Transport
铜传输的分子机制
基本信息
- 批准号:10213151
- 负责人:
- 金额:$ 34.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseBindingBinding SitesBioavailableBiochemicalBiochemical ProcessBiochemistryBiogenesisBiological AssayBiological ProcessBiologyBiophysicsCardiacCardiovascular DiseasesCarrier ProteinsCellsCellular MembraneCoenzymesComplementCopperCrystallizationDevelopmentDiseaseDrug Metabolic DetoxicationEnzymesEssential Amino AcidsEukaryotaFamilyFoundationsGene MutationGenerationsGoalsGrowth and Development functionHealthHeart DiseasesHepaticHepatolenticular DegenerationHomeostasisHormonesHumanImmune System DiseasesIn VitroIntegral Membrane ProteinIonsIronIron deficiency anemiaKnowledgeLinkMalignant NeoplasmsMembraneMenkes Kinky Hair SyndromeMetabolismMethodsMitochondriaMolecularMolecular ChaperonesMutagenesisNatureNerve DegenerationNeurodegenerative DisordersNeurologicNeuronsNeuropeptidesOrganellesParkinson DiseasePathologicPathologyPatientsPeripheralPharmacotherapyPhysiologicalPhysiologyPlasmaPositioning AttributeProteinsRegulationResolutionRespirationRoentgen RaysRoleSite-Directed MutagenesisStructureSuperoxidesTestingTherapeuticToxic effectTrace ElementsWorkX-Ray CrystallographyYeastsZincbasebiophysical propertiescofactordietaryhuman diseasein vitro Assayin vivoinnovationinsightlarge scale productionmolecular modelingmutantnovel therapeuticsreconstitutionthree dimensional structureuptake
项目摘要
ABSTRACT
Molecular Mechanisms of Copper Transport
Copper (Cu) is an essential trace element for growth and development because Cu acts as an indispensable
cofactor for a variety of enzymes that are involved in multiple biological processes, and mutations of genes
involved in Cu transport result in severe, even lethal, neurodegenerative diseases such as Wilson's disease
and Menkes syndrome. Abnormal Cu levels have also been linked to a range of pathological conditions,
including Alzheimer's, Parkinson's, cardiovascular disease and cancer. Despite the overwhelming importance
of Cu in health and disease, we have only rudimentary understanding of the molecular basis of Cu transport,
with a lack of high-resolution three-dimensional structures and relevant biochemical and biophysical
characterization that are essential for the development of appropriate mechanism-based therapeutics.
Therefore, our long-term goal is to attain a comprehensive understanding of molecular mechanisms of Cu
homeostasis using a combination of biochemical, biophysical, and structural approaches. In cells, appropriate
Cu levels are tightly regulated by a sophisticated network of Cu-handling proteins, including Cu transporters,
chaperones, and acceptors, to control the acquisition, distribution, and delivery of bioavailable Cu. Ubiquitous
in eukaryotes, the copper transporter (Ctr) family of integral membrane proteins, Ctr1 and Ctr2, is involved in
Cu transport across cellular membranes including both the plasma and intracellular organelle membranes. We
have recently developed innovative methods for large-scale production of Ctr1 and Ctr2 transporter proteins,
generation of diffraction-quality crystals, and for successful in vitro reconstitution assays. With these exciting
preliminary developments, we are now able to combine X-ray crystallography, in vitro biochemical
reconstitution, in vivo functional complementation assays, and site-directed mutagenesis to address Cu
transport mechanisms. Specifically, we aim to determine the molecular basis of selectivity and permeation in
Cu uptake by Ctr1, the underlying mechanism of zinc regulation in Ctr1, and molecular determinants for Cu
transport in Ctr proteins. Our proposed work will provide atomic structures of Ctr1 and Ctr2 transporters in
multiple functional states and uncover structural and molecular mechanisms of Cu transport. Detailed
understanding of the mechanism, function, and regulation of Ctr proteins will open new therapeutic avenues for
the treatment of a broad spectrum of diseases associated with disturbed Cu metabolism.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Yuan其他文献
Peng Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Yuan', 18)}}的其他基金
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10688147 - 财政年份:2022
- 资助金额:
$ 34.45万 - 项目类别:
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10818026 - 财政年份:2022
- 资助金额:
$ 34.45万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10352470 - 财政年份:2021
- 资助金额:
$ 34.45万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10577809 - 财政年份:2021
- 资助金额:
$ 34.45万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10162828 - 财政年份:2021
- 资助金额:
$ 34.45万 - 项目类别:
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9927711 - 财政年份:2017
- 资助金额:
$ 34.45万 - 项目类别:
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9381325 - 财政年份:2017
- 资助金额:
$ 34.45万 - 项目类别:














{{item.name}}会员




