STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
基本信息
- 批准号:9381325
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgonistAreaBiochemicalBiological AssayBiological ProcessBiologyBiophysicsBlood VesselsCalciumCalcium SignalingChemicalsClinicalComplementComplexCryoelectron MicroscopyCrystallizationDataDetergentsDevelopmentDiseaseDrug TargetingDrug effect disorderElectrophysiology (science)FoundationsFunctional disorderGoalsHomologous GeneHypertensionInflammationInheritedIntegral Membrane ProteinInterventionIon ChannelIonsLengthLigandsMalignant NeoplasmsMembraneMembrane LipidsMembrane ProteinsMethodsMolecularMutationNerve DegenerationNeurobiologyNociceptionNon-Insulin-Dependent Diabetes MellitusObesityOsmoregulationPainPathologicPermeabilityPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiologicalPhysiological ProcessesPhysiologyPlayPositioning AttributePropertyRegulationResearchResolutionRoentgen RaysRoleSensorySignal TransductionSite-Directed MutagenesisStimulusStructural ProteinStructureTemperatureTherapeutic InterventionThermogenesisWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionchronic paindesigndrug discoveryhigh dimensionalityhuman diseaseinsightmechanical forcemembernervous system disordernovelnovel therapeuticsparticlepatch clampreceptorscreeningskeletal dysplasiastructural biologythree dimensional structurevoltage
项目摘要
Structure and Mechanism of a Polymodal TRP Ion Channel Transient receptor potential (TRP) ion channels are crucial for sensory transduction and cellular signaling, and TRP channel dysfunction is associated with a vast array of hereditary and acquired diseases including cancer, chronic pain, hypertension, and neurological disorders. Because of their central roles in physiology and pathophysiology, TRP channels have been intensively studied and are among the most aggressively pursued drug targets. However, advances in our understanding of TRP channel function and therapeutic interventions
have been hindered by a lack of three-dimensional high-resolution structural information for most TRP channels. Our long-term goal is to develop structural and biochemical approaches to elucidate molecular mechanisms of TRP channels at the atomic level. By developing new methods to systematically evaluate heterologous expression, purification, and optimization of TRP channel homologs, we have recently crystallized a nearly full-length functional channel and obtained preliminary X-ray diffraction to 4.8 Å resolution. With this technical breakthrough and further optimization, we are now able to combine X-ray crystallography, single-particle cryo-electron microscopy (cryo-EM), patch-clamp electrophysiology, and site-directed mutagenesis to address fundamental molecular mechanisms. Specifically, we aim to determine high-resolution X-ray and cryo-EM structures of the channel bound with agonists or antagonists, and in complex with
membrane lipids that regulate channel activity, and to dissect the underlying mechanisms of disease-associated mutations. Our proposed work will provide X-ray and cryo-EM structures of a TRP channel in multiple functional states and uncover structural and molecular mechanisms. In doing so, we will not only bring fundamental insights into TRP channel function, but also establish a foundation for rational design of new therapeutics for the treatment of many channel-associated diseases.
多模态TRP离子通道的结构和机制瞬时受体电位(TRP)离子通道对于感觉传导和细胞信号传导至关重要,并且TRP通道功能障碍与大量遗传性和获得性疾病相关,包括癌症、慢性疼痛、高血压和神经系统疾病。由于其在生理学和病理生理学中的中心作用,TRP通道已被深入研究,并且是最积极追求的药物靶标之一。然而,我们对TRP通道功能的理解和治疗干预的进展
由于缺乏大多数TRP通道的三维高分辨率结构信息而受阻。我们的长期目标是发展结构和生物化学的方法来阐明TRP通道在原子水平上的分子机制。通过开发新的方法来系统地评估TRP通道同源物的异源表达、纯化和优化,我们最近结晶了一个几乎全长的功能通道,并获得了初步的X射线衍射,分辨率为4.8 nm。随着这一技术突破和进一步优化,我们现在能够结合联合收割机X射线晶体学,单粒子冷冻电子显微镜(cryo-EM),膜片钳电生理学和定点诱变来解决基本的分子机制。具体来说,我们的目标是确定与激动剂或拮抗剂结合的通道的高分辨率X射线和冷冻电镜结构,以及与
调节通道活性的膜脂质,并剖析疾病相关突变的潜在机制。我们的工作将提供TRP通道在多个功能状态下的X射线和冷冻电镜结构,并揭示结构和分子机制。在这样做的过程中,我们不仅将带来对TRP通道功能的基本见解,而且还为合理设计用于治疗许多通道相关疾病的新疗法奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Yuan其他文献
Peng Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Yuan', 18)}}的其他基金
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10688147 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Structural Mechanism for Gating of Mechanosensitive Channels
机械敏感通道门控的结构机制
- 批准号:
10818026 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10352470 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10577809 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Antibiotic-sparing strategies targeting outer membrane ushers in Gram-negative bacterial pathogens
针对外膜的抗生素节约策略迎来革兰氏阴性细菌病原体
- 批准号:
10162828 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
STRUCTURE AND MECHANISM OF A POLYMODAL TRP ION CHANNEL
多峰TRP离子通道的结构和机制
- 批准号:
9927711 - 财政年份:2017
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 33.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)